Numerical analysis of the spectrum of the Orr–Sommerfeld problem
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 10, pp. 1672-1691 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A high-accuracy method for computing the eigenvalues $\lambda_n$ and the eigenfunctions of the Orr–Sommerfeld operator is developed. The solution is represented as a combination of power series expansions, and the latter are then matched. The convergence rate of the expansions is analyzed by applying the theory of recurrence equations. For the Couette and Poiseuille flows in a channel, the behavior of the spectrum as the Reynolds number $\mathrm R$ increases is studied in detail. For the Couette flow, it is shown that the eigenvalues $\lambda_n$ regarded as functions of $\mathrm R$ have a countable set of branch points $\mathrm R_k>0$ at which the eigenvalues have a multiplicity of 2. The first ten of these points are presented within ten decimals.
@article{ZVMMF_2007_47_10_a2,
     author = {S. L. Skorokhodov},
     title = {Numerical analysis of the spectrum of the {Orr{\textendash}Sommerfeld} problem},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1672--1691},
     year = {2007},
     volume = {47},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_10_a2/}
}
TY  - JOUR
AU  - S. L. Skorokhodov
TI  - Numerical analysis of the spectrum of the Orr–Sommerfeld problem
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2007
SP  - 1672
EP  - 1691
VL  - 47
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_10_a2/
LA  - ru
ID  - ZVMMF_2007_47_10_a2
ER  - 
%0 Journal Article
%A S. L. Skorokhodov
%T Numerical analysis of the spectrum of the Orr–Sommerfeld problem
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2007
%P 1672-1691
%V 47
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_10_a2/
%G ru
%F ZVMMF_2007_47_10_a2
S. L. Skorokhodov. Numerical analysis of the spectrum of the Orr–Sommerfeld problem. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 10, pp. 1672-1691. http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_10_a2/

[1] Lin Tszya-Tszyao, Teoriya gidrodinamicheskoi ustoichivosti, Izd-vo inostr. lit., M., 1958

[2] Betchov R., Kriminale V., Voprosy gidrodinamicheskoi ustoichivosti, Mir, M., 1971 | Zbl

[3] Drazin R. G., Reid W. H., Hydrodynamic stability, Cambridge Univ., Cambridge, 1981 | MR | Zbl

[4] Zhuk V. I., Volny Tollmina–Shlikhtinga i solitony, Nauka, M., 2001

[5] Drazin F., Vvedenie v teoriyu gidrodinamicheskoi ustoichivosti, Fizmatlit, M., 2005

[6] Boiko A. B., Grek G. R., Dovgal A. B., Kozlov V. V., Fizicheskie mekhanizmy perekhoda k turbulentnosti v otkrytykh techeniyakh, In-t kompyut. issledovanii, M., 2006

[7] Sehensted I. V., Contributions to the theory of hydrodynamic stability, Ph. D. thesis, Univ. of Michigan, 1960

[8] DiPrima R. C., Habetler G. J., “A completeness theorem for non-selfadjoint eigenvalue problems in hydrodynamic stability”, Arch. Ration. Mech. and Anal., 34 (1969), 218–227 | DOI | MR

[9] Reddy S. C., Schmid P. J., Henningson D. S., “Pseudospectra of the Orr–Sommerfeld operator”, SIAM J. Appl. Math., 53 (1993), 15–47 | DOI | MR | Zbl

[10] Stepin C. A., “Nesamosopryazhennye singulyarnye vozmuscheniya i spektralnye svoistva zadachi Orra–Zommerfelda”, Matem. sb., 188 (1997), 129–146 | MR | Zbl

[11] Dyachenko A. V., Shkalikov A. A., On the Orr–Sommerfeld equation with linear profile, Dec. 2002, arXiv: math.FA/0212127 | MR

[12] Shkalikov A. A., “Spektralnye portrety operatora Orra–Zommerfelda pri bolshikh chislakh Reinoldsa”, Sovremennaya matematika. Fundamentalnoe napravlenie, 3, 2003, 89–112 | MR | Zbl

[13] Zhuk V. I., Protsenko I. G., “Asimptotika reshenii uravneniya Orra–Zommerfelda v okrestnostyakh dvukh vetvei neitralnoi krivoi”, Zh. vychisl. matem. i matem. fiz., 43:11 (2003), 1737–1753 | MR | Zbl

[14] Zhuk V. I., Protsenko I. G., “Asimptoticheskaya struktura volnovykh vozmuschenii v teorii ustoichivosti ploskogo techeniya Kuetta–Puazeilya”, Zh. vychisl. matem. i matem. fiz., 45:6 (2005), 1060–1080 | MR | Zbl

[15] Zhuk V. I., Protsenko I. G., “Asimptoticheskaya model evolyutsii vozmuschenii v ploskom techenii Kuetta–Puazeilya”, Dokl. RAN, 411:1 (2006), 20–24 | MR

[16] Thomas H. H., “The stability of plane Poiseuille flow”, Phys. Rev., 91:4 (1953), 780–783 | DOI | MR | Zbl

[17] Zharilkasinov A., Liseikin V. D., Skobelev B. Yu., Yanenko H. H., “Primenenie neravnomernoi setki dlya chislennogo resheniya zadachi Orra–Zommerfelda”, Chisl. metody mekhan. sploshnoi sredy, 14, no. 5, Novosibirsk, 1983, 45–54

[18] Orszag S. A., “Accurate solution of the Orr–Sommerfeld equation”, J. Fluid Mech., 50:4 (1971), 689–703 | DOI | Zbl

[19] Orszag S. A., “Numerical simulation of incompressible flows within simple boundaries. I. Galerkin (Spectral) representations”, Study Appl. Math., 50:4 (1971), 293–327 | MR | Zbl

[20] Chandrasekhar S., Hydrodynamic and hydromagnetic stability, Oxford Univ. Press, Oxford, 1961 | MR | Zbl

[21] Gallagher A. P., Mercer A. McD., “On the behaviour of small disturbances in plane Couette flow”, J. Fluid Mech., 13 (1962), 91–100 | DOI | MR | Zbl

[22] Neiman-zade M. I., Shkalikov A. A., “O vychislenii sobstvennykh znachenii zadachi Orra–Zommerfelda”, Fundamentalnaya i prikl. matem., 8:1 (2002), 301–305 | MR | Zbl

[23] Sleptsov A. G., “Proektsionno-setochnye metody resheniya zadachi Orra–Zommerfelda”, Chisl. metody mekhan. sploshnoi sredy, 14, no. 5, ITPM SO AN SSSR, Novosibirsk, 1983, 111–126

[24] Narmuradov Ch. B., “Ob odnom effektivnom metode resheniya uravneniya Orra–Zommerfelda”, Matem. modelirovanie, 17:9 (2005), 35–42 | MR | Zbl

[25] Abramov A. A., Alvares L. M., “Metod resheniya zhestkikh kraevykh zadach, osnovannyi na rasscheplenii operatora”, Zh. vychisl. matem. i matem. fiz., 29:12 (1989), 1800–1810 | MR

[26] Alvares L. M., Ditkin V. V., “O chislennom reshenii uravneniya Orra–Zommerfelda”, Zh. vychisl. matem. i matem. fiz., 30:4 (1990), 611–615 | MR

[27] Abramov A. A., Ulyanova V. I., “Ob odnom metode resheniya uravneniya tipa bigarmonicheskogo s singulyarno vkhodyaschim malym parametrom”, Zh. vychisl. matem. i matem. fiz., 32:4 (1992), 567–575 | MR | Zbl

[28] Ulyanova V. I., “Ob ispolzovanii metoda rasschepleniya operatora v zadachakh na sobstvennye znacheniya dlya uravneniya tipa Orra–Zommerfelda”, Zh. vychisl. matem. i matem. fiz., 33:4 (1993), 635–639 | MR

[29] Kurochkin S. V., “Metod vyyavleniya neustoichivosti i poiska neustoichivsykh sobstvennykh znachenii v zadache Orra–Zommerfelda”, Zh. vychisl. matem. i matem. fiz., 41:1 (2001), 86–94 | MR | Zbl

[30] Dubrovskii V. V., Kadchenko S. I., Kravchenko V. F., Sadovnichii B. A., “Novyi metod priblizhennogo vychisleniya pervykh sobstvennykh chisel spektralnoi zadachi Orra–Zommerfelda”, Dokl. RAN, 378:4 (2001), 443–446 | MR | Zbl

[31] Trefethen L. N., “Pseudospectra of linear operators”, SIAM. Rev., 39:3 (1997), 383–406 | DOI | MR | Zbl

[32] Golubev V. V., Lektsii po analiticheskoi teorii differentsialnykh uravnenii, Gostekhteorizdat, M., L., 1950

[33] Gelfond A. O., Ischislenie konechnykh raznostei, Nauka, M., 1967 | MR

[34] Birkhoff G. D., “Formal theory of irregular difference equations”, Acta Math., 54 (1930), 205–246 | DOI | MR | Zbl

[35] Birkhoff G. D., Trjitzinsky W., “Analytic theory of singular difference equations”, Acta Math., 60 (1932), 1–89 | DOI | MR

[36] Wimp J., Zeilberger D., “Resurrecting the asymptotics of linear recurrences”, J. Math. Analys. and Appl., 111 (1985), 162–176 | DOI | MR | Zbl

[37] Smirnov V. I., Kurs vysshei matematiki, v. 1, Gostekhteorizdat, M., 1954

[38] Romanov V. A., “Ustoichivost ploskoparallelnogo techeniya Kuetta”, Dokl. AN SSSR, 196:5 (1971), 1049–1051 | MR | Zbl

[39] Romanov B. A., “Ustoichivost ploskoparallelnogo techeniya Kuetta”, Funkts. analiz i ego prilozh., 7:2 (1973), 62–73 | MR | Zbl

[40] Skorokhodov S. L., Khristoforov D. V., “Vychislenie tochek vetvleniya sobstvennykh znachenii, sootvetstvuyuschikh volnovym sferoidalnym funktsiyam”, Zh. vychisl. matem. i matem. fiz., 46:7 (2006), 1195–1210 | MR

[41] Skorokhodov S. L., Khristoforov D. V., “Tochki vetvleniya sobstvennykh znachenii, sootvetstvuyuschikh sferoidalnym volnovym funktsiyam”, Mezhdunar. konf. “Tikhonov i sovremennaya matem.”, Tezisy dokl. sekts. “Funkts. analiz i differents. ur-niya” (Moskva, 19–25 iyunya 2006 g.), 259–260