Logical regularities in pattern recognition (parametric approach)
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 10, pp. 1793-1808 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The search for logical regularities of classes in the recognition by precedents problems and the use of logical regularities for solving recognition and prediction problems are considered. Logical regularities of classes are defined as conjunctions of one-place predicates that determine the membership of a value of a feature in a certain interval of the real axis. The conjunctions are true on the subsets of reference objects of a certain class and are optimal. Various optimality criteria are considered and the problem of finding logical regularities is formulated as an integer programming problem. A qualitative analysis of these problems is performed. Models for evaluating estimates on the basis of systems of logical regularities are considered. Modifications of linear decision rules for finding estimates of how close the reference objects are to classes are proposed that are based on the search for the maximum gap. Approximations of logical regularities of classes by smooth functions is proposed. The concept of the dynamic logical regularity of classes is introduced, an algorithm for finding dynamic logical regularities is proposed, and a prediction method is developed.
@article{ZVMMF_2007_47_10_a11,
     author = {V. V. Ryazanov},
     title = {Logical regularities in pattern recognition (parametric approach)},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1793--1808},
     year = {2007},
     volume = {47},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_10_a11/}
}
TY  - JOUR
AU  - V. V. Ryazanov
TI  - Logical regularities in pattern recognition (parametric approach)
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2007
SP  - 1793
EP  - 1808
VL  - 47
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_10_a11/
LA  - ru
ID  - ZVMMF_2007_47_10_a11
ER  - 
%0 Journal Article
%A V. V. Ryazanov
%T Logical regularities in pattern recognition (parametric approach)
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2007
%P 1793-1808
%V 47
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_10_a11/
%G ru
%F ZVMMF_2007_47_10_a11
V. V. Ryazanov. Logical regularities in pattern recognition (parametric approach). Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 10, pp. 1793-1808. http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_10_a11/

[1] Dmitriev A. N., Zhuravlev Yu. I., Krendelev F. P., “O matematicheskikh printsipakh klassifikatsii predmetov i yavlenii”, Diskretnyi analiz, 7, IM SO AN SSSR, Novosibirsk, 1966, 3–11

[2] Zhuravlev Yu. I., Nikiforov V. V., “Algoritmy raspoznavaniya, osnovannye na vychislenii otsenok”, Kibernetika, 1971, no. 3, 1–11 | Zbl

[3] Zhuravlev Yu. I., “Ob algebraicheskom podkhode k resheniyu zadach raspoznavaniya ili klassifikatsii”, Probl. kibernetiki, 33, Nauka, M., 1978, 5–68

[4] Vaintsvaig M. N., “Algoritm obucheniya raspoznavaniyu obrazov “Kora””, Algoritmy obucheniya raspoznavaniyu obrazov, Sov. radio, M., 1973, 8–12

[5] Baskakova L. V., Zhuravlev Yu. I., “Model raspoznayuschikh algoritmov s predstavitelnymi naborami i sistemami opornykh mnozhestv”, Zh. vychisl. matem. i matem. fiz., 21:5 (1981), 1264–1275 | MR | Zbl

[6] Zhuravlev Yu. I., Izbrannye nauchnye trudy, Izd-vo Magistr., M., 1998 | Zbl

[7] Zhuravlev Yu. I., “Ob algoritmakh raspoznavaniya s predstavitelnymi naborami (o logicheskikh algoritmakh)”, Zh. vychisl. matem. i matem. fiz., 42:9 (2002), 1425–1435 | MR | Zbl

[8] Dyukova E. V., Zhuravlev Yu. I., “Diskretnyi analiz priznakovykh opisanii v zadachakh raspoznavaniya bolshoi razmernosti”, Zh. vychisl. matem. i matem. fiz., 40:8 (2000), 1264–1278 | MR | Zbl

[9] Dyukova E. V., “Algoritmy raspoznavaniya tipa “Kora”: slozhnost realizatsii i metricheskie svoistva”, Raspoznavanie, klassifikatsiya, prognoz: Matem. metody i ikh primenenie, v. 2, Nauka, M., 1989, 99–125 | MR

[10] Kochetkov D. V., “Raspoznayuschie algoritmy, invariantnye otnositelno preobrazovanii prostranstva priznakov. 1–3”, Raspoznavanie, klassifikatsiya, prognoz: Matem. metody i ikh primenenie, v. 1, Nauka, M., 1989, 82–113 ; т. 2, 178–206 ; т. 3, 1992, 178–206, 64–88 | MR | MR

[11] Ryazanov V. V., Senko O. V., “O nekotorykh modelyakh golosovaniya i metodakh ikh optimizatsii”, Raspoznavanie, klassifikatsiya, prognoz: Matem. metody i ikh primenenie, v. 3, Nauka, M., 1992, 106–145 | MR

[12] Ryazanov V. V., “Recognition algorithms based on local optimality criteria”, Pattern Recognition and Image Analys., 4:2 (1994), 98–109

[13] Lairn S. B., Ryazanov V. V., “The search of precedent-based logical regularities for recognition and data analysis problems”, Pattern Recognition and Image Analys., 7:3 (1997), 322–333

[14] Zhuravlev Yu. I., Ryazanov B. B., “Ob izvlechenii znanii iz vyborok pretsedentov v modelyakh klassifikatsii, osnovannykh na printsipe chastichnoi pretsedentnosti”, Dokl. IX Mezhdunar. konf. “Znanie-dialog-reshenie” (Sankt-Peterburg, 18–23 iyunya 2001), 232–237

[15] Zhuravlev Yu. I., Ryazanov V. V., Senko O. V., Raspoznavanie. Matematicheskie metody. Programmnaya sistema. Prakticheskie primeneniya, FAZIS, M., 2006

[16] Burges Ch. J. C., “A tutorial on support vector machines for pattern recognition”, Data Mining and Knowledge Discovery, 2 (1998), 121–167 | DOI

[17] Aizerman M. A., Braverman E. M., Rozonoer L. I., Metod potentsialnykh funktsii v teorii obucheniya mashin, Nauka, M., 1970