On the stability of inner and outer approximations of a convex compact set by a ball
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 10, pp. 1657-1671 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The finite-dimensional problems of outer and inner estimation of a convex compact set by a ball of some norm (circumscribed and inscribed ball problems) are considered. The stability of the solution with respect to the error in the specification of the estimated compact set is generally characterized. A new solution criterion for the outer estimation problem is obtained that relates the latter to the inner estimation problem for the lower Lebesgue set of the distance function to the most distant point of the estimated compact set. A quantitative estimate for the stability of the center of an inscribed ball is given under the additional assumption that the compact set is strongly convex. Assuming that the used norm is strongly quasi-convex, a quantitative stability estimate is obtained for the center of a circumscribed ball.
@article{ZVMMF_2007_47_10_a1,
     author = {S. I. Dudov and A. S. Dudova},
     title = {On the stability of inner and outer approximations of a~convex compact set by a~ball},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1657--1671},
     year = {2007},
     volume = {47},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_10_a1/}
}
TY  - JOUR
AU  - S. I. Dudov
AU  - A. S. Dudova
TI  - On the stability of inner and outer approximations of a convex compact set by a ball
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2007
SP  - 1657
EP  - 1671
VL  - 47
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_10_a1/
LA  - ru
ID  - ZVMMF_2007_47_10_a1
ER  - 
%0 Journal Article
%A S. I. Dudov
%A A. S. Dudova
%T On the stability of inner and outer approximations of a convex compact set by a ball
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2007
%P 1657-1671
%V 47
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_10_a1/
%G ru
%F ZVMMF_2007_47_10_a1
S. I. Dudov; A. S. Dudova. On the stability of inner and outer approximations of a convex compact set by a ball. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 10, pp. 1657-1671. http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_10_a1/

[1] Bonnezen T., Fenkhel V., Teoriya vypuklykh tel, Fazis, M., 2002

[2] Tot L. F., Raspolozheniya na ploskosti, na sfere i v prostranstve, Fizmatlit, M., 1958

[3] Chernousko F. L., Otsenivanie fazovogo sostoyaniya dinamicheskikh sistem: metod ellipsoidov, Nauka, M., 1988 | MR

[4] Kurzhanski A. B., Valyi I., Ellipsoidal calculus tor estimation and comrol, Birkhausen, Boston, 1997

[5] Abramov O. V., Zdor V. V., Suponya A. A., Dopuski i nominaly sistem upravleniya, Nauka, M., 1976 | MR

[6] Dudov S. I., “O zadache fiksirovannykh dopuskov”, Zh. vychisl. matem i matem. fiz., 37:8 (1997), 937–944 | MR | Zbl

[7] Nikolskii M. S., Silin D. B., “O nailuchshem priblizhenii vypuklogo kompakta elementami addiala”, Tr. Matem. in-ta RAN, 211, 1995, 338–354 | MR

[8] Polovinkin E. S., “Silno vypuklyi analiz”, Matem. sb., 187:2 (1996), 103–130 | MR | Zbl

[9] Polovinkin E. S., Balashov M. V., Elementy vypuklogo i silno vypuklogo analiza, Fizmatlit, M., 2004

[10] Leikhtveis K., Vypuklye mnozhestva, Nauka, M., 1985 | MR

[11] Pshenichnyi B. N., Vypuklyi analiz i ekstremalnye zadachi, Nauka, M., 1980 | MR | Zbl

[12] Demyanov V. F., Vasilev L. V., Nedifferentsiruemaya optimizatsiya, Nauka, M., 1981 | MR

[13] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1986 | MR

[14] Dudov S. I., “Vnutrennyaya otsenka vypuklogo mnozhestva telom normy”, Zh. vychisl. matem. i matem. fiz., 36:5 (1996), 153–159 | MR | Zbl

[15] Karmanov V. G., Matematicheskoe programmirovanie, Nauka, M., 1986 | MR

[16] Vasilev F. P., Chislennye metody resheniya ekstremalnykh zadach, Nauka, M., 1988 | MR

[17] Dudov S. I., “Subdifferentsiruemost i superdifferentsiruemost funktsii rasstoyaniya”, Matem. zametki, 61:4 (1997), 530–542 | MR | Zbl

[18] Dudov S. I., “Ob obobschennom gradiente funktsii rasstoyaniya”, Tr. mezhdunar. konf., posvyasch. 90-letiyu L. S. Pontryagina, v. 2, Itogi nauki i tekhn. Ser. Sovrem. matem. i ee prilozh., 61, Negladkii analiz i optimizatsiya, M., 1999, 5–14 | Zbl

[19] Dudov S. I., Zlatorunskaya I. V., “Ravnomernaya otsenka vypuklogo kompakta sharom proizvolnoi normy”, Matem. sb., 191:10 (2000), 13–38 | MR | Zbl

[20] Dudova A. C., “Svoistva funktsii rasstoyaniya do strogo i silno vypuklogo mnozhestva”, Matematika. Mekhanika, v. 8, Izd-vo Saratovskogo un-ta, Saratov, 2006, 44–47

[21] Demyanov V. F., Malozemov V. N., Vvedenie v minimaks, Nauka, M., 1972 | MR

[22] Dudova A. C., “Ob approksimatsii vypuklogo kompakta mnogogrannikom”, Matematika. Mekhanika, v. 7, Izd-vo Saratovskogo un-ta, Saratov, 2005, 45–47

[23] Dudova A. C., “Ob ustoichivosti resheniya zadachi nailuchshego priblizheniya vypuklogo kompakta sharom”, Izv. vuzov. Matematika, 2006, no. 7, 25–33 | MR

[24] Dudov S. I., “Vzaimosvyaz nekotorykh zadach po otsenke vypuklogo kompakta sharom”, Matem. sb., 198:1 (2007), 43–58 | MR | Zbl