@article{ZVMMF_2007_47_10_a0,
author = {B. Nguyen},
title = {Tikhonov {Regularization} for {General} {Nonlinear} {Constrained} {Optimization} {Problem}},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1651--1656},
year = {2007},
volume = {47},
number = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_10_a0/}
}
TY - JOUR AU - B. Nguyen TI - Tikhonov Regularization for General Nonlinear Constrained Optimization Problem JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2007 SP - 1651 EP - 1656 VL - 47 IS - 10 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_10_a0/ LA - en ID - ZVMMF_2007_47_10_a0 ER -
B. Nguyen. Tikhonov Regularization for General Nonlinear Constrained Optimization Problem. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 47 (2007) no. 10, pp. 1651-1656. http://geodesic.mathdoc.fr/item/ZVMMF_2007_47_10_a0/
[1] Fletcher R., Reeves C., “Function minimization by conjugate gradients”, Comput. J., 7 (1964), 149–154 | DOI | MR | Zbl
[2] Polak E., Ribiére G., “Note sur la convergence de directions conjugees”, Rev. Francaise Inform. Rech. Operat., 16 (1969), 35–43 | MR | Zbl
[3] Polyak B. T., “Metod sopryazhennykh gradientov v zadachakh na ekstremum”, Zh. vychisl. matem. i matem. fiz., 9:4 (1969), 807–821 | Zbl
[4] Hestenes M. R., Stiefel E. L., “Methods of conjugate gradients for solving linear systems”, Res. Nat. Bur. Standards Sect., 5 (1952), 409–436 | MR
[5] Yuan Y., “On the trancated conjugate gradient method”, Math. Program., 87 (2000), 561–571 | DOI | MR
[6] Yuan Y., “A class of globally convergent conjugate gradient methods”, Science in China, 46 (2003), 253–261 | MR
[7] Yuan Y., “A new stepsize for the steepest descent method”, J. Comput. Math., 24 (2006), 149–156 | MR | Zbl
[8] Powell M. J. D., “A new algorithm for unconstrained optimization”, Nonlinear Program., Acad. Press, New York, 1970, 31–66 | MR
[9] Powell M. J. D., “Convergence properties of a class of minimization problems”, Nonlinear Program., v. 2, Acad. Press, New York, 1975, 1–27 | MR
[10] Powell M. J. D., “On the global convergence of trust region algorithm for unconstrained optimization”, Math. Program., 29 (1984), 297–303 | DOI | MR | Zbl
[11] Powell M. J. D., Yuan Y., “A trust region algorithm for equality constrained optimization”, Math. Program., 49 (1991), 189–211 | DOI | MR
[12] Vardi A., “A trust region algorithm for equality constrained minimization: convergence properties and implementation”, SIAM J. Numer. Analys., 4 (1985), 575–591 | DOI | MR
[13] Yuan Y., “On the convergence of a new trust region algorithm”, Numer. Math., 70 (1995), 515–539 | DOI | MR | Zbl
[14] Vasilev F. P., Chislennye metody resheniya ekstremalnykh zadach, Nauka, M., 1988 | MR
[15] Vasilev F. P., Metody optimizatsii, Faktorial Press, M., 2002
[16] Nguyen Bitong, “Regularization for unconstrained vector optimization of convex functionals in Banach spaces”, Zh. vychisl. matem. i matem. fiz., 46:3 (2006), 372–378 | MR | Zbl
[17] Nguyen Buong, “Convergence rates and finite-dimensional approximations for a class of ill-posed variational inequalities”, Ukrainskii matem. zhurnal, 48 (1996), 1–9 | MR
[18] Nguyen Buong, Phan Vam Loi, “On parameter choice and convergence rates in regularization for a class of ill-posed variational inequalities”, Zh. vychisl. matem. i matem. fiz., 44:10 (2004), 1735–1744 | MR | Zbl
[19] Kluge R., “Optimal control with minimum problems and variational inequalities”, Lect. Notes Comput. Sci., 27, 1975, 375–382
[20] Ryazantseva I. P., “Operatornyi metod regulyarizatsii dlya optimalnogo resheniya zadach s monotonnymi otobrazheniyami”, Sibirskii matem. zhurnal, 24 (1983), 455–456
[21] Tikhonov A. N., Arsenin V. Ya., Metody resheniya plokho obuslovlennykh zadach, Nauka, M., 1979 | MR