Buffer phenomenon in systems with one and a half degrees of freedom
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 9, pp. 1582-1593 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The buffer phenomenon is established for some classical mechanics problems that are described by pendulum-type equations with time-periodic small additive terms. This phenomenon is as follows: the systems under consideration can have an arbitrary fixed number of stable periodic modes if the system parameters are properly chosen.
@article{ZVMMF_2006_46_9_a3,
     author = {S. D. Glyzin and A. Yu. Kolesov and N. Kh. Rozov},
     title = {Buffer phenomenon in systems with one and a~half degrees of freedom},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1582--1593},
     year = {2006},
     volume = {46},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_9_a3/}
}
TY  - JOUR
AU  - S. D. Glyzin
AU  - A. Yu. Kolesov
AU  - N. Kh. Rozov
TI  - Buffer phenomenon in systems with one and a half degrees of freedom
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2006
SP  - 1582
EP  - 1593
VL  - 46
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_9_a3/
LA  - ru
ID  - ZVMMF_2006_46_9_a3
ER  - 
%0 Journal Article
%A S. D. Glyzin
%A A. Yu. Kolesov
%A N. Kh. Rozov
%T Buffer phenomenon in systems with one and a half degrees of freedom
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2006
%P 1582-1593
%V 46
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_9_a3/
%G ru
%F ZVMMF_2006_46_9_a3
S. D. Glyzin; A. Yu. Kolesov; N. Kh. Rozov. Buffer phenomenon in systems with one and a half degrees of freedom. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 9, pp. 1582-1593. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_9_a3/

[1] Vitt A. A., “Raspredelennye avtokolebatelnye sistemy”, Zh. tekhn. fiz., 4:1 (1934), 144–157

[2] Kolesov A. Yu., Mischenko E. F., Rozov N. Kh., “Asimptoticheskie metody issledovaniya periodicheskikh reshenii nelineinykh giperbolicheskikh uravnenii”, Tr. Matem. in-ta RAN, 222, 1998, 3–191

[3] Kolesov A. Yu., Rozov N. Kh., Sushko V. G., “Spetsifika avtokolebatelnykh protsessov v rezonansnykh giperbolicheskikh sistemakh”, Fundament. i prikl. matem., 5:2 (1999), 437–473 | MR | Zbl

[4] Kolesov A. Yu., Mischenko E. F., Rozov N. Kh., “Yavlenie bufernosti v rezonansnykh sistemakh giperbolicheskikh uravnenii”, Uspekhi matem. nauk, 55:2(332) (2000), 95–120 | MR | Zbl

[5] Kolesov A. Yu., Rozov N. Kh., “Yavlenie bufernosti v RCLG-avtogeneratore: teoreticheskii analiz i rezultaty eksperimenta”, Tr. Matem. in-ta RAN, 233, 2001, 153–207 | MR | Zbl

[6] Kolesov A. Yu., Rozov N. Kh., “Yavlenie bufernosti v raspredelennykh mekhanicheskikh sistemakh”, Prikl. matem. i mekhan., 65:2 (2001), 183–198 | MR | Zbl

[7] Mischenko E. F., Sadovnichii V. A., Kolesov A. Yu., Rozov N. Kh., Avtovolnovye protsessy v nelineinykh sredakh s diffuziei, Fizmatlit, M., 2005

[8] Zaslavskii G. M., Sagdeev R. Z., Vvedenie v nelineinuyu fiziku. Ot mayatnika do turbulentnosti i khaosa, Nauka, M., 1988 | MR

[9] Zaslavskii G. M., Fizika khaosa v gamiltonovykh sistemakh, In-t kompyuternykh issl., M., Izhevsk, 2004

[10] Landau L. D., Lifshits E. M., Teoreticheskaya fizika, v. 1, Mekhanika, Fizmatlit, M., 1988 | MR

[11] Uitteker E. T., Vatson Dzh. N., Kurs sovremennogo analiza. Ch. 2. Transtsendentnye funktsii, M., 1963

[12] Kozlov V. V., “Rasscheplenie separatris i rozhdenie izolirovannykh periodicheskikh reshenii v gamiltonovykh sistemakh s polutora stepenyami svobody”, Uspekhi matem. nauk, 41:5 (1986), 177–178 | MR

[13] Kozlov V. V., Simmetrii, topologiya i rezonansy v gamiltonovoi mekhanike, Izd-vo Udmurtskogo un-ta, Izhevsk, 1995 | MR | Zbl

[14] Morozov A. D., Globalnyi analiz v teorii nelineinykh kolebanii, Nizhegorodskii un-t, N/Novgorod, 1995

[15] Puankare A., Izbrannye trudy, v. I, Novye metody nebesnoi mekhaniki, Nauka, M., 1971

[16] http://tracer3.narod.ru

[17] Gavrilov N. K., Shilnikov L. P., “O trekhmernykh dinamicheskikh sistemakh, blizkikh k sisteme s negruboi gomoklinicheskoi krivoi. I”, Matem. sb., 88:4 (1972), 475–492 | MR | Zbl

[18] Gavrilov N. K., Shilnikov L. P., “O trekhmernykh dinamicheskikh sistemakh, blizkikh k sisteme s negruboi gomoklinicheskoi krivoi. II”, Matem. sb., 90:1 (1973), 139–156 | MR

[19] Gukenkheimer Dzh., Kholms F., Nelineinye kolebaniya, dinamicheskie sistemy i bifurkatsii vektornykh polei, In-t kompyuternykh issl., M., Izhevsk, 2002