Numerical simulation of the consequences of a mechanical action on a human brain under a skull injury
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 9, pp. 1711-1720 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A two-dimensional mathematical model of the mechanical response of a human head to a shock action is proposed. It describes the spatial distribution of the mechanical loads on the brain. Some numerical results obtained using the grid characteristic methods on unstructured triangular grids are presented.
@article{ZVMMF_2006_46_9_a13,
     author = {P. I. Agapov and O. M. Belotserkovskii and I. B. Petrov},
     title = {Numerical simulation of the consequences of a~mechanical action on a~human brain under a~skull injury},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1711--1720},
     year = {2006},
     volume = {46},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_9_a13/}
}
TY  - JOUR
AU  - P. I. Agapov
AU  - O. M. Belotserkovskii
AU  - I. B. Petrov
TI  - Numerical simulation of the consequences of a mechanical action on a human brain under a skull injury
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2006
SP  - 1711
EP  - 1720
VL  - 46
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_9_a13/
LA  - ru
ID  - ZVMMF_2006_46_9_a13
ER  - 
%0 Journal Article
%A P. I. Agapov
%A O. M. Belotserkovskii
%A I. B. Petrov
%T Numerical simulation of the consequences of a mechanical action on a human brain under a skull injury
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2006
%P 1711-1720
%V 46
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_9_a13/
%G ru
%F ZVMMF_2006_46_9_a13
P. I. Agapov; O. M. Belotserkovskii; I. B. Petrov. Numerical simulation of the consequences of a mechanical action on a human brain under a skull injury. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 9, pp. 1711-1720. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_9_a13/

[1] Belotserkovskii O. M., Chislennoe modelirovanie v mekhanike sploshnykh sred, Fiz.-mat. lit., M., 1994 | Zbl

[2] Novatskii V. K., Teoriya uprugosti, Mir, M., 1975 | MR

[3] Magomedov K. M., Kholodov A. C., Setochno-kharakteristicheskie chislennye metody, Nauka, M., 1988 | MR

[4] Petrov I. B., Kholodov A. C., “O regulyarizatsii razryvnykh chislennykh reshenii uravnenii giperbolicheskogo tipa”, Zh. vychisl. matem. i matem. fiz., 24:8 (1984), 1172–1188 | MR | Zbl

[5] Petrov I. B., Tormasov A. G., Kholodov A. C., “Ob ispolzovanii gibridizirovannykh setochno-kharakteristicheskikh skhem dlya chislennogo resheniya trekhmernykh zadach dinamiki deformiruemogo tverdogo tela”, Zh. vychisl. matem. i matem. fiz., 30:8 (1990), 1237–1244 | MR

[6] Agapov P. I., Petrov I. B., Chelnokov F. B., “Chislennoe issledovanie zadach mekhaniki deformiruemogo tverdogo tela v neodnorodnykh oblastyakh integrirovaniya”, Obrabotka informatsii i modelirovanie, M., 2002, 148–157