A postprocessor for a posteriori error estimation of computed flow parameters
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 9, pp. 1704-1710 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The possibility is explored of creating a postprocessor for a posteriori error estimation of computed target functionals based on the residual generated by a high-accuracy stencil and adjoint parameters as applied to a numerical solution. The applicability of this approach to the supersonic Euler equations is confirmed by computing the density at a control point.
@article{ZVMMF_2006_46_9_a12,
     author = {A. K. Alekseev and S. V. Zhurin},
     title = {A~postprocessor for a~posteriori error estimation of computed flow parameters},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1704--1710},
     year = {2006},
     volume = {46},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_9_a12/}
}
TY  - JOUR
AU  - A. K. Alekseev
AU  - S. V. Zhurin
TI  - A postprocessor for a posteriori error estimation of computed flow parameters
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2006
SP  - 1704
EP  - 1710
VL  - 46
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_9_a12/
LA  - ru
ID  - ZVMMF_2006_46_9_a12
ER  - 
%0 Journal Article
%A A. K. Alekseev
%A S. V. Zhurin
%T A postprocessor for a posteriori error estimation of computed flow parameters
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2006
%P 1704-1710
%V 46
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_9_a12/
%G ru
%F ZVMMF_2006_46_9_a12
A. K. Alekseev; S. V. Zhurin. A postprocessor for a posteriori error estimation of computed flow parameters. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 9, pp. 1704-1710. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_9_a12/

[1] Alekseev A. K., “Aposteriornaya otsenka pogreshnosti konechno-raznostnogo resheniya s pomoschyu sopryazhennykh uravnenii i differentsialnogo predstavleniya”, Zh. vychisl. matem. i matem. fiz., 45:7 (2005), 1213–1225 | MR | Zbl

[2] Giles M. B., Suli E., “Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality”, Acta Numerica, 11 (2002), 145–206 | DOI | MR

[3] Venditti D., Darmofal D., “Grid adaptation for functional outputs: application to two-dimensional inviscid flow”, J. Comput. Phys., 176 (2002), 40–69 | DOI | MR | Zbl

[4] Alekseev A. K., Zhurin S. V., “Postprotsessor dlya aposteriornoi otsenki pogreshnosti rascheta parametrov techeniya”, Materialy XIV Mezhdunar. konf. po vychisl. mekhan. i sovrem. prikl. programmnym sistemam (Alushta, 25–31 maya 2005 g.), Vuzovskaya kniga, M., 2005, 36–37

[5] Shokin Yu. I., Yanenko H. H., Metod differentsialnogo priblizheniya, Nauka, 1985 | Zbl

[6] Marchuk G. I., Sopryazhennye uravneniya i analiz slozhnykh sistem, Nauka, M., 1992 | MR

[7] Rouch P., Vychislitelnaya gidrodinamika, Mir, M., 1980 | Zbl

[8] Kulikovskii A. G., Pogorelov N. V., Semenov A. Yu., Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii, Fizmatlit, M., 2001 | MR

[9] Rodionov A. B., “Monotonnaya skhema vtorogo poryadka approksimatsii dlya skvoznogo rascheta neravnovesnykh techenii”, Zh. vychisl. matem. i matem. fiz., 27:4 (1987), 585–593 | MR | Zbl