@article{ZVMMF_2006_46_9_a10,
author = {A. G. Kolpakov},
title = {Convergence of solutions for a~network approximation of the two-dimensional {Laplace} equation in a~domain with a~system of absolutely conducting disks},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1682--1691},
year = {2006},
volume = {46},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_9_a10/}
}
TY - JOUR AU - A. G. Kolpakov TI - Convergence of solutions for a network approximation of the two-dimensional Laplace equation in a domain with a system of absolutely conducting disks JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2006 SP - 1682 EP - 1691 VL - 46 IS - 9 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_9_a10/ LA - ru ID - ZVMMF_2006_46_9_a10 ER -
%0 Journal Article %A A. G. Kolpakov %T Convergence of solutions for a network approximation of the two-dimensional Laplace equation in a domain with a system of absolutely conducting disks %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2006 %P 1682-1691 %V 46 %N 9 %U http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_9_a10/ %G ru %F ZVMMF_2006_46_9_a10
A. G. Kolpakov. Convergence of solutions for a network approximation of the two-dimensional Laplace equation in a domain with a system of absolutely conducting disks. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 9, pp. 1682-1691. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_9_a10/
[1] Maxwell J. C., Treatise on electricity and magnetismus, v. 1, Univ. Press, Oxford, 1873
[2] Keller J. B., “Conductivity of a medium containing a dense array of ideal conducting bodies or cylinders or nonconducting cylinders”, J. Appl. Phys., 34:4 (1963), 991–993 | DOI | Zbl
[3] Sahimi M., Heterogeneous materials, Springer, New York, 2003
[4] Borcea L., “Asymptotic analysis of quasi-static transport in high contrast conductive media”, SIAM J. Appl. Math., 2(59) (1998), 597–635 | DOI | MR
[5] Borcea L., Papanicolau G., “Network approximation for conducting properties of high contrast materials”, SIAM J. Appl. Math., 58:2 (1998), 501–539 | DOI | MR | Zbl
[6] Borcea L., Berryman J. G., Papanicolau G., “Matching pursuit for imaging hing-contrast conductivity”, Inverse Problems, 15 (1999), 811–849 | DOI | MR | Zbl
[7] Kozlov S. M., “Geometricheskie aspekty usredneniya”, Uspekhi matem. nauk, 44:2 (1989), 79–120
[8] Berlyand L., Kolpakov A. G., “Network approximation in the limit of small interparticle distance of effective properties of a high contrast random dispersed composite”, Arch. Ration. Mech. and Analys., 2001, no. 3, 179–227 | DOI | MR | Zbl
[9] Kolpakov A. G., “Konechnomernaya model provodimosti plotno upakovannykh chastits”, Zh. vychisl. matem. i matem. fiz., 43:1 (2003), 133–148 | MR
[10] Kolpakov A. G., “Asimptotika provodyaschikh svoistv vysokokontrastnykh sred”, Prikl. mekhan. i tekhn. fiz., 3 (2005), 128–140 | MR | Zbl
[11] Medvedev H. H., Metod Voronogo–Delone i issledovanie struktury nekristallicheskikh sistem, Izd-vo SO RAN, Novosibirsk, 2000
[12] Tamm I. E., Osnovy teorii elektrichestva, Izd. 9-e, Nauka, M., 1976
[13] Berlyand L., Borcea L., Panchenko A., “Network approximation for effective viscosity of concentrated suspensions with complex geometries”, SIAM J. Math. Analys., 36:5 (2005), 1580–1628 | DOI | MR | Zbl
[14] Berlyand L., Gorb J., Novikov A., “Discrete network approximation for highly-packed composites with irregular geometry in three dimensions”, Multiscale Methods in Sci. and Engng., Lect. Notes in Comput. Sci. and Engng., 44, Springer, New York etc., 2005, 21–58 | MR
[15] Smait V., Elektrostatika i elektrodinamika, Izd-vo inostr. lit., M., 1954
[16] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Nauka, M., 1971 | Zbl
[17] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1976 | MR