Convergence of solutions for a network approximation of the two-dimensional Laplace equation in a domain with a system of absolutely conducting disks
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 9, pp. 1682-1691 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A boundary value problem for the Laplace equation describing the (electric, thermal, etc.) field of a system of ideally conducting disks of radius $R$ is considered. The solution to the problem is analyzed under the condition that the characteristic distance $\delta$ between the disks is small. It was previously proved that the original continuous problem can be approximated as $\delta\to0$ by a finite-dimensional network problem in the sense that the effective conductivities (energies) of the continuous problem are close to those of its network model. It is shown that the potentials of the ideally conducting disks determined from the continuous problem and the network model are also close to each other as $\delta\to0$, and the difference between the potentials is $O(\varepsilon^{1/4})$, where $\varepsilon=\delta/R$ is the characteristic relative distance between the disks.
@article{ZVMMF_2006_46_9_a10,
     author = {A. G. Kolpakov},
     title = {Convergence of solutions for a~network approximation of the two-dimensional {Laplace} equation in a~domain with a~system of absolutely conducting disks},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1682--1691},
     year = {2006},
     volume = {46},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_9_a10/}
}
TY  - JOUR
AU  - A. G. Kolpakov
TI  - Convergence of solutions for a network approximation of the two-dimensional Laplace equation in a domain with a system of absolutely conducting disks
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2006
SP  - 1682
EP  - 1691
VL  - 46
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_9_a10/
LA  - ru
ID  - ZVMMF_2006_46_9_a10
ER  - 
%0 Journal Article
%A A. G. Kolpakov
%T Convergence of solutions for a network approximation of the two-dimensional Laplace equation in a domain with a system of absolutely conducting disks
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2006
%P 1682-1691
%V 46
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_9_a10/
%G ru
%F ZVMMF_2006_46_9_a10
A. G. Kolpakov. Convergence of solutions for a network approximation of the two-dimensional Laplace equation in a domain with a system of absolutely conducting disks. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 9, pp. 1682-1691. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_9_a10/

[1] Maxwell J. C., Treatise on electricity and magnetismus, v. 1, Univ. Press, Oxford, 1873

[2] Keller J. B., “Conductivity of a medium containing a dense array of ideal conducting bodies or cylinders or nonconducting cylinders”, J. Appl. Phys., 34:4 (1963), 991–993 | DOI | Zbl

[3] Sahimi M., Heterogeneous materials, Springer, New York, 2003

[4] Borcea L., “Asymptotic analysis of quasi-static transport in high contrast conductive media”, SIAM J. Appl. Math., 2(59) (1998), 597–635 | DOI | MR

[5] Borcea L., Papanicolau G., “Network approximation for conducting properties of high contrast materials”, SIAM J. Appl. Math., 58:2 (1998), 501–539 | DOI | MR | Zbl

[6] Borcea L., Berryman J. G., Papanicolau G., “Matching pursuit for imaging hing-contrast conductivity”, Inverse Problems, 15 (1999), 811–849 | DOI | MR | Zbl

[7] Kozlov S. M., “Geometricheskie aspekty usredneniya”, Uspekhi matem. nauk, 44:2 (1989), 79–120

[8] Berlyand L., Kolpakov A. G., “Network approximation in the limit of small interparticle distance of effective properties of a high contrast random dispersed composite”, Arch. Ration. Mech. and Analys., 2001, no. 3, 179–227 | DOI | MR | Zbl

[9] Kolpakov A. G., “Konechnomernaya model provodimosti plotno upakovannykh chastits”, Zh. vychisl. matem. i matem. fiz., 43:1 (2003), 133–148 | MR

[10] Kolpakov A. G., “Asimptotika provodyaschikh svoistv vysokokontrastnykh sred”, Prikl. mekhan. i tekhn. fiz., 3 (2005), 128–140 | MR | Zbl

[11] Medvedev H. H., Metod Voronogo–Delone i issledovanie struktury nekristallicheskikh sistem, Izd-vo SO RAN, Novosibirsk, 2000

[12] Tamm I. E., Osnovy teorii elektrichestva, Izd. 9-e, Nauka, M., 1976

[13] Berlyand L., Borcea L., Panchenko A., “Network approximation for effective viscosity of concentrated suspensions with complex geometries”, SIAM J. Math. Analys., 36:5 (2005), 1580–1628 | DOI | MR | Zbl

[14] Berlyand L., Gorb J., Novikov A., “Discrete network approximation for highly-packed composites with irregular geometry in three dimensions”, Multiscale Methods in Sci. and Engng., Lect. Notes in Comput. Sci. and Engng., 44, Springer, New York etc., 2005, 21–58 | MR

[15] Smait V., Elektrostatika i elektrodinamika, Izd-vo inostr. lit., M., 1954

[16] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Nauka, M., 1971 | Zbl

[17] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1976 | MR