@article{ZVMMF_2006_46_8_a9,
author = {S. E. Zhelezovsky},
title = {On the convergence of the {Galerkin} method for coupled thermoelasticity problems},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1462--1474},
year = {2006},
volume = {46},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_8_a9/}
}
TY - JOUR AU - S. E. Zhelezovsky TI - On the convergence of the Galerkin method for coupled thermoelasticity problems JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2006 SP - 1462 EP - 1474 VL - 46 IS - 8 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_8_a9/ LA - ru ID - ZVMMF_2006_46_8_a9 ER -
S. E. Zhelezovsky. On the convergence of the Galerkin method for coupled thermoelasticity problems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 8, pp. 1462-1474. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_8_a9/
[1] Mikhlin S. G., Chislennaya realizatsiya variatsionnykh metodov, Nauka, M., 1966 | MR
[2] Zhelezovskii S. E., Kirichenko V. F., Krysko V. A., “O skorosti skhodimosti metoda Bubnova–Galerkina dlya odnoi neklassicheskoi sistemy differentsialnykh uravnenii”, Differents. ur-niya, 23:8 (1987), 1407–1416 | MR
[3] Sobolevskii P. E., “Ob uravneniyakh s operatorami, obrazuyuschimi ostryi ugol”, Dokl. AN SSSR, 116:5 (1957), 752–757 | MR
[4] Zhelezovskii S. E., “K otsenkam pogreshnosti metoda Bubnova–Galerkina dlya svyazannykh zadach termouprugosti”, Differents. ur-niya, 30:12 (1994), 2122–2132 | MR
[5] Zhelezovskii S. E., “Utochnennye otsenki pogreshnosti metoda Bubnova–Galerkina dlya svyazannoi zadachi termouprugosti plastin”, Izv. vuzov. Matematika, 1998, no. 4, 75–77 | MR
[6] Zhelezovskii S. E., Ivanov G. M., Krivonogov N. P., “O skorosti skhodimosti approksimatsii Galerkina dlya nelineinoi zadachi termouprugosti tonkikh plastin”, Zh. vychisl. matem. i matem. fiz., 38:1 (1998), 157–168 | MR
[7] Zhelezovskii S. E., “Otsenka pogreshnosti metoda Galerkina dlya nelineinoi svyazannoi zadachi termouprugosti obolochek s trekhmernym uravneniem teploprovodnosti”, Zh. vychisl. matem. i matem. fiz., 45:9 (2005), 1677–1690 | MR
[8] Mansfield L., “Analysis of finite element methods for the nonlinear dynamic analysis of shells”, Numer. Math., 42:2 (1983), 213–235 | DOI | MR | Zbl
[9] Zhelezovskii S. E., “Otsenki skorosti skhodimosti metoda Galerkina dlya abstraktnogo giperbolicheskogo uravneniya”, Matem. zametki, 69:2 (2001), 223–234 | MR
[10] Zhelezovskii S. E., “Otsenka pogreshnosti metoda Galerkina dlya abstraktnogo evolyutsionnogo uravneniya vtorogo poryadka s negladkim svobodnym chlenom”, Differents. ur-niya, 40:7 (2004), 944–952 | MR | Zbl
[11] Smagin V. V., “Koertsitivnye otsenki pogreshnostei proektsionnogo i proektsionno-raznostnogo metodov dlya parabolicheskikh uravnenii”, Matem. sb., 185:11 (1994), 79–94 | Zbl
[12] Smagin V. V., “Otsenki pogreshnosti poludiskretnykh priblizhenii po Galerkinu dlya parabolicheskikh uravnenii s kraevym usloviem tipa Neimana”, Izv. vuzov. Matematika, 1996, no. 3, 50–57 | MR | Zbl
[13] Thomée V., Galerkin finite element methods for parabolic problems, Lect. Notes Math., 1054, Springer, Berlin etc., 1984 | MR | Zbl
[14] Dendy J. E., Jr., “Galerkin's method for some highly nonlinear problems”, SIAM J. Numer. Analys., 14:2 (1977), 327–347 | DOI | MR | Zbl
[15] Geveci T., “On the convergence of Galerkin approximation schemes for second-order hyperbolic equations in energy and negative norms”, Math. Comput., 42:166 (1984), 393–415 | DOI | MR | Zbl
[16] Zarubin A. G., “O skorosti skhodimosti metoda Faedo–Galerkina dlya kvazilineinykh nestatsionarnykh operatornykh uravnenii”, Differents. ur-niya, 26:12 (1990), 2051–2059 | MR | Zbl
[17] Lyashko A. D., “Poludiskretnye skhemy metoda konechnykh elementov dlya nestatsionarnykh vyrozhdayuschikhsya uravnenii”, Differents. ur-niya, 39:7 (2003), 955–959 | MR | Zbl
[18] Lyashko A. D., Fedotov E. M., “Poludiskretnye skhemy metoda konechnykh elementov dlya vyrozhdayuschikhsya giperbolicheskikh uravnenii”, Differents. ur-niya, 41:7 (2005), 950–954 | MR | Zbl
[19] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR
[20] Novatskii V., Dinamicheskie zadachi termouprugosti, Mir, M., 1970
[21] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR
[22] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980 | MR
[23] Akhiezer N. I., Lektsii po teorii approksimatsii, Nauka, M., 1965 | MR
[24] Dyuvo G., Lions Zh.-L., Neravenstva v mekhanike i fizike, Nauka, M., 1980 | MR
[25] Blum H., Rannacher R., “On the boundary value problem of the biharmonic operator on domains with angular corners”, Math. Meth. Appl. Sci., 2:4 (1980), 556–581 | DOI | MR | Zbl
[26] Kadlets Ya., “O regulyarnosti resheniya zadachi Puassona na oblasti s granitsei, lokalno podobnoi granitse vypukloi oblasti”, Chekhosl. matem. zhurnal, 14:3 (1964), 386–393