On the convergence of the Galerkin method for coupled thermoelasticity problems
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 8, pp. 1462-1474 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Cauchy problem for a system of two operator-differential equations is considered that is an abstract statement of linear coupled thermoelasticity problems. Error estimates in the energy norm for the semidiscrete Galerkin method as applied to the Cauchy problem are established without imposing any special conditions on the projection subspaces. By way of illustration, the error estimates are applied to finite element schemes for solving the coupled problem of plate thermoelasticity considered within the framework of the Kirchhoff linearized theory. The results obtained are also applicable to the case when the projection subspaces in the Galerkin method (for the original abstract problem) are the eigenspaces of operators similar to unbounded self-adjoint positive definite operator coefficients of the original equations.
@article{ZVMMF_2006_46_8_a9,
     author = {S. E. Zhelezovsky},
     title = {On the convergence of the {Galerkin} method for coupled thermoelasticity problems},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1462--1474},
     year = {2006},
     volume = {46},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_8_a9/}
}
TY  - JOUR
AU  - S. E. Zhelezovsky
TI  - On the convergence of the Galerkin method for coupled thermoelasticity problems
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2006
SP  - 1462
EP  - 1474
VL  - 46
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_8_a9/
LA  - ru
ID  - ZVMMF_2006_46_8_a9
ER  - 
%0 Journal Article
%A S. E. Zhelezovsky
%T On the convergence of the Galerkin method for coupled thermoelasticity problems
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2006
%P 1462-1474
%V 46
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_8_a9/
%G ru
%F ZVMMF_2006_46_8_a9
S. E. Zhelezovsky. On the convergence of the Galerkin method for coupled thermoelasticity problems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 8, pp. 1462-1474. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_8_a9/

[1] Mikhlin S. G., Chislennaya realizatsiya variatsionnykh metodov, Nauka, M., 1966 | MR

[2] Zhelezovskii S. E., Kirichenko V. F., Krysko V. A., “O skorosti skhodimosti metoda Bubnova–Galerkina dlya odnoi neklassicheskoi sistemy differentsialnykh uravnenii”, Differents. ur-niya, 23:8 (1987), 1407–1416 | MR

[3] Sobolevskii P. E., “Ob uravneniyakh s operatorami, obrazuyuschimi ostryi ugol”, Dokl. AN SSSR, 116:5 (1957), 752–757 | MR

[4] Zhelezovskii S. E., “K otsenkam pogreshnosti metoda Bubnova–Galerkina dlya svyazannykh zadach termouprugosti”, Differents. ur-niya, 30:12 (1994), 2122–2132 | MR

[5] Zhelezovskii S. E., “Utochnennye otsenki pogreshnosti metoda Bubnova–Galerkina dlya svyazannoi zadachi termouprugosti plastin”, Izv. vuzov. Matematika, 1998, no. 4, 75–77 | MR

[6] Zhelezovskii S. E., Ivanov G. M., Krivonogov N. P., “O skorosti skhodimosti approksimatsii Galerkina dlya nelineinoi zadachi termouprugosti tonkikh plastin”, Zh. vychisl. matem. i matem. fiz., 38:1 (1998), 157–168 | MR

[7] Zhelezovskii S. E., “Otsenka pogreshnosti metoda Galerkina dlya nelineinoi svyazannoi zadachi termouprugosti obolochek s trekhmernym uravneniem teploprovodnosti”, Zh. vychisl. matem. i matem. fiz., 45:9 (2005), 1677–1690 | MR

[8] Mansfield L., “Analysis of finite element methods for the nonlinear dynamic analysis of shells”, Numer. Math., 42:2 (1983), 213–235 | DOI | MR | Zbl

[9] Zhelezovskii S. E., “Otsenki skorosti skhodimosti metoda Galerkina dlya abstraktnogo giperbolicheskogo uravneniya”, Matem. zametki, 69:2 (2001), 223–234 | MR

[10] Zhelezovskii S. E., “Otsenka pogreshnosti metoda Galerkina dlya abstraktnogo evolyutsionnogo uravneniya vtorogo poryadka s negladkim svobodnym chlenom”, Differents. ur-niya, 40:7 (2004), 944–952 | MR | Zbl

[11] Smagin V. V., “Koertsitivnye otsenki pogreshnostei proektsionnogo i proektsionno-raznostnogo metodov dlya parabolicheskikh uravnenii”, Matem. sb., 185:11 (1994), 79–94 | Zbl

[12] Smagin V. V., “Otsenki pogreshnosti poludiskretnykh priblizhenii po Galerkinu dlya parabolicheskikh uravnenii s kraevym usloviem tipa Neimana”, Izv. vuzov. Matematika, 1996, no. 3, 50–57 | MR | Zbl

[13] Thomée V., Galerkin finite element methods for parabolic problems, Lect. Notes Math., 1054, Springer, Berlin etc., 1984 | MR | Zbl

[14] Dendy J. E., Jr., “Galerkin's method for some highly nonlinear problems”, SIAM J. Numer. Analys., 14:2 (1977), 327–347 | DOI | MR | Zbl

[15] Geveci T., “On the convergence of Galerkin approximation schemes for second-order hyperbolic equations in energy and negative norms”, Math. Comput., 42:166 (1984), 393–415 | DOI | MR | Zbl

[16] Zarubin A. G., “O skorosti skhodimosti metoda Faedo–Galerkina dlya kvazilineinykh nestatsionarnykh operatornykh uravnenii”, Differents. ur-niya, 26:12 (1990), 2051–2059 | MR | Zbl

[17] Lyashko A. D., “Poludiskretnye skhemy metoda konechnykh elementov dlya nestatsionarnykh vyrozhdayuschikhsya uravnenii”, Differents. ur-niya, 39:7 (2003), 955–959 | MR | Zbl

[18] Lyashko A. D., Fedotov E. M., “Poludiskretnye skhemy metoda konechnykh elementov dlya vyrozhdayuschikhsya giperbolicheskikh uravnenii”, Differents. ur-niya, 41:7 (2005), 950–954 | MR | Zbl

[19] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR

[20] Novatskii V., Dinamicheskie zadachi termouprugosti, Mir, M., 1970

[21] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR

[22] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980 | MR

[23] Akhiezer N. I., Lektsii po teorii approksimatsii, Nauka, M., 1965 | MR

[24] Dyuvo G., Lions Zh.-L., Neravenstva v mekhanike i fizike, Nauka, M., 1980 | MR

[25] Blum H., Rannacher R., “On the boundary value problem of the biharmonic operator on domains with angular corners”, Math. Meth. Appl. Sci., 2:4 (1980), 556–581 | DOI | MR | Zbl

[26] Kadlets Ya., “O regulyarnosti resheniya zadachi Puassona na oblasti s granitsei, lokalno podobnoi granitse vypukloi oblasti”, Chekhosl. matem. zhurnal, 14:3 (1964), 386–393