Direct numerical simulation of the turbulent flow in an elliptical pipe
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 8, pp. 1453-1461 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The turbulent flow in a pipe with an elliptical cross section is directly simulated at $\operatorname{Re}=4000$ (where the Reynolds number $\operatorname{Re}$ is calculated in terms of the mean velocity and the hydraulic diameter). The incompressible Navier–Stokes equations are solved in curvilinear orthogonal coordinates by using a central-difference approximation in space and a third-order accurate semi-implicit Runge–Kutta method for time integration. The discrete equations inherit some properties of the original differential equations, in particular, the neutrality of the convective terms and of the pressure gradient in the kinetic energy production. The distributions of the mean and fluctuation characteristics of the turbulent motion over the pipe's cross section are computed.
@article{ZVMMF_2006_46_8_a8,
     author = {T. V. Voronova and N. V. Nikitin},
     title = {Direct numerical simulation of the turbulent flow in an elliptical pipe},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1453--1461},
     year = {2006},
     volume = {46},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_8_a8/}
}
TY  - JOUR
AU  - T. V. Voronova
AU  - N. V. Nikitin
TI  - Direct numerical simulation of the turbulent flow in an elliptical pipe
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2006
SP  - 1453
EP  - 1461
VL  - 46
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_8_a8/
LA  - ru
ID  - ZVMMF_2006_46_8_a8
ER  - 
%0 Journal Article
%A T. V. Voronova
%A N. V. Nikitin
%T Direct numerical simulation of the turbulent flow in an elliptical pipe
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2006
%P 1453-1461
%V 46
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_8_a8/
%G ru
%F ZVMMF_2006_46_8_a8
T. V. Voronova; N. V. Nikitin. Direct numerical simulation of the turbulent flow in an elliptical pipe. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 8, pp. 1453-1461. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_8_a8/

[1] Moin P., Mahesh K., “Direct numerical simulation: a tool in turbulence research”, Ann. Rev. Fluid Mech., 30 (1998), 539–578 | DOI | MR

[2] Rozhdestvensky B. L., Simakin I. N., “Secondary flow in a plane channel: their relashionship and comparison with turbulent flows”, J. Fluid Mech., 147 (1984), 261–289 | DOI | Zbl

[3] Kim J., Moin P., Moser R., “Turbulence statistics in fully developed channel flow at low Reynolds number”, J. Fluid Mech., 177 (1987), 133–166 | DOI | Zbl

[4] Spalart P. R., “Direct simulation of a turbulent boundary layer up to $\operatorname{Re}_{\theta}=1410$”, J. Fluid Mech., 187 (1988), 61–98 | DOI | Zbl

[5] Priimak V. G., “Rezultaty i vozmozhnosti pryamogo chislennogo modelirovaniya turbulentnykh techenii vyazkoi zhidkosti v krugloi trube”, Dokl. AN SSSR, 316:1 (1991), 71–76 | MR

[6] Eggels J. G. M., Unger F., Weiss M. H. et al., “Fully developed turbulent pipe flow: a comparison between direct numerical simulation and experiment”, J. Fluid Mech., 268 (1994), 175–209 | DOI

[7] Nikitin H. B., “Pryamoe chislennoe modelirovanie trekhmernykh turbulentnykh techenii v trubakh krugovogo secheniya”, Izv. RAN. Mekhan. zhidkosti i gaza, 1994, no. 6, 14–26 | MR

[8] Nikitin N. V., “Statisticheskie kharakteristiki pristennoi turbulentnosti”, Izv. RAN. Mekhan. zhidkosti i gaza, 1996, no. 3, 32–43 | Zbl

[9] Demuren A. O., Rodi W., “Calculation of turbulence-driven secondary motion in non-circular ducts”, J. Fluid Mech., 140 (1984), 189–222 | DOI | Zbl

[10] Gavrilakis S., “Numerical simulation of low-Reynolds-number turbulent flow through a straight square duct”, J. Fluid Mech., 244 (1992), 101–129 | DOI

[11] Huser A., Biringen S., “Direct numerical simulation of turbulent flow in a square duct”, J. Fluid Mech., 257 (1993), 65–95 | DOI | Zbl

[12] Nikitin H. B., “Chislennoe modelirovanie turbulentnykh techenii v trube kvadratnogo secheniya”, Dokl. RAN, 353:3 (1997), 338–342 | Zbl

[13] Nikitin N., Yakhot A., “Direct numerical simulation of turbulent flow in elliptical ducts”, J. Fluid Mech., 532 (2005), 141–164 | DOI | MR | Zbl

[14] Nikitin N., “Finite-difference method for incompressible Navier–Stokes equations in arbitrary orthogonal curvilinear coordinates”, J. Comput. Phys., 217:2 (2006), 759–781 | DOI | MR | Zbl

[15] Nikitin N., “Third-order-accurate semi-implicit Runge–Kutta scheme for incompressible Navier–Stokes equations”, Int. J. Numer. Meth. Fluids, 51:2 (2006), 221–233 | DOI | MR | Zbl

[16] Nikitin H. B., “Pryamoi raschet turbulentnykh techenii v ekstsentricheskikh trubakh”, Zh. vychisl. matem. i matem. fiz., 46:3 (2006), 509–526 | MR | Zbl

[17] Harlow F. H., Welsh J. E., “Numerical calculation of time-dependent viscous incompressible flow with free surface”, Phys. Fluides, 8 (1965), 2182–2189 | DOI | Zbl

[18] Nikitin H. B., Pryamoe chislennoe modelirovanie turbulentnykh techenii v trubakh, Avtoref. $\dots$ dis. dokt. fiz.-matem. nauk, MGU, M., 1996

[19] Choi H., Moin P., “Effects of the computational time step on numerical solutions of turbulent flow”, J. Comput. Phys., 113 (1994), 1–4 | DOI | Zbl

[20] Ham F. E., Lien F. S., Strong A. B., “A fully conservative second-order finite difference scheme for incompressible flow on nonuniform grids”, J. Comput. Phys., 177 (2002), 117–133 | DOI | Zbl