A parallel computational scheme with ninth-order multioperator approximations and its application to direct numerical simulation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 8, pp. 1433-1452 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The properties of ninth-order multioperator compact schemes based on known third-and fifth-order compact approximations are examined. The domains where the multioperators have fixed signs are determined numerically. The numerical results are compared with the exact solution to the Burgers equation. The multioperator schemes are applied to the problem of vortex sheet roll-up.
@article{ZVMMF_2006_46_8_a7,
     author = {M. V. Lipavskii and A. I. Tolstykh and E. N. Chiger\"ev},
     title = {A~parallel computational scheme with ninth-order multioperator approximations and its application to direct numerical simulation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1433--1452},
     year = {2006},
     volume = {46},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_8_a7/}
}
TY  - JOUR
AU  - M. V. Lipavskii
AU  - A. I. Tolstykh
AU  - E. N. Chigerëv
TI  - A parallel computational scheme with ninth-order multioperator approximations and its application to direct numerical simulation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2006
SP  - 1433
EP  - 1452
VL  - 46
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_8_a7/
LA  - ru
ID  - ZVMMF_2006_46_8_a7
ER  - 
%0 Journal Article
%A M. V. Lipavskii
%A A. I. Tolstykh
%A E. N. Chigerëv
%T A parallel computational scheme with ninth-order multioperator approximations and its application to direct numerical simulation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2006
%P 1433-1452
%V 46
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_8_a7/
%G ru
%F ZVMMF_2006_46_8_a7
M. V. Lipavskii; A. I. Tolstykh; E. N. Chigerëv. A parallel computational scheme with ninth-order multioperator approximations and its application to direct numerical simulation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 8, pp. 1433-1452. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_8_a7/

[1] Liu X.-D., Osker S., Chan T., “Weighted essentially non-oscillatory schemes”, J. Comput. Phys., 115 (1994) | DOI | MR | Zbl

[2] Shu C.-W., Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, NASA/CR-97-206253, ICASE Report No. 97-65, Langley Res. Center, Hampton, 1997 | MR

[3] Tolstykh A. I., Kompaktnye raznostnye skhemy i ikh primenenie v zadachakh aerogidrodinamiki, Nauka, M., 1990 | MR

[4] High accuracy non-centered compact difference schemes for fluid dynamics applic., World Scient., Singapore, 1994

[5] Lele S. K., “Compact finite difference schemes with spectral-like resolution”, J. Comput. Phys., 102 (1992), 16–42 | DOI | MR

[6] Savelev A. D., O raznostnykh skhemakh vysokogo poryadka s sostavnymi stabiliziruyuschimi dobavkami, VTs RAN, M., 2003

[7] Tolstykh A. I., “Multioperatornye skhemy proizvolnogo poryadka, ispolzuyuschie netsentrirovannye kompaktnye approksimatsii”, Dokl. RAN, 366:3 (1999), 319–322 | MR | Zbl

[8] Lipavskii M. V., Tolstykh A. I., “Multioperatornye kompaktnye skhemy 5-go i 7-go poryadkov”, Zh. vychisl. matem. i matem. fiz., 43:7 (2003), 1018–1034 | MR | Zbl

[9] Tolstykh A. I., “O postroenii skhem zadannogo poryadka s lineinymi kombinatsiyami operatorov”, Zh. vychisl. matem. i matem. fiz., 40:8 (2000), 1206–1220 | MR | Zbl

[10] Samarskii A. A., Gulin A. B., Ustoichivost raznostnykh skhem, Nauka, M., 1973 | Zbl

[11] Tolstykh A. I., Shirobokov D. A., “O raznostnykh skhemakh s kompaktnymi approksimatsiyami pyatogo poryadka dlya prostranstvennykh techenii vyazkogo gaza”, Zh. vychisl. matem. i matem. fiz., 36:4 (1996), 71–85 | MR | Zbl

[12] Tolstykh A. I., “Ob odnom semeistve kompaktnykh approksimatsii i osnovannykh na nikh multioperatornykh approksimatsiyakh zadannogo poryadka”, Dokl. RAN, 403:2 (2005), 172–177 | MR | Zbl

[13] Adams N. A., Sharif K., “A high-resolution compact-ENO scheme for shock-turbulence interaction problems”, J. Comput. Phys., 127 (1996), 27–51 | DOI | MR | Zbl

[14] Lipavskii M. V., Tolstykh A. I., “O sravnitelnoi effektivnosti skhem s netsentrirovannymi kompaktnymi approksimatsiyami”, Zh. vychisl. matem. i matem. fiz., 39:10 (1999), 1705–1720 | MR

[15] Brown D. L., Minion M. L., “Performance of under-resorved two-dimensional incompressible flow simulations”, J. Comput. Phys., 122 (1995), 165–183 | DOI | MR | Zbl

[16] Minion M. L., Brown D. L., “Performance of under-resorved two-dimensional incompressible flow simulations. II”, J. Comput. Phys., 138 (1997), 734–765 | DOI | MR | Zbl

[17] Tolstykh A. I., Chigirev E. N., “On thin shear layers numerical simulation”, J. Comput. Phys., 166 (2001), 152–158 | DOI | Zbl

[18] Lipavskii M. V., Chigerev E. H., Chislennoe issledovanie vikhrevykh dvizhenii zhidkosti s pomoschyu netsentrirovannykh kompaktnykh approksimatsii, VTs RAN, M., 2004

[19] Frik P. G., Turbulentnost: podkhody i modeli, In-t kompyuternykh issl., M., Izhevsk, 2003