Numerical stabilization of the Lorenz system by a small external perturbation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 8, pp. 1415-1422 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Lorenz system perturbed by noise and its invariant measure whose density obeys the stationary Fokker–Planck equation are analyzed numerically. A linear functional of the invariant measure is considered, and its variation caused by a variation in the right-hand side of the Lorenz system is calculated. A small (in modulus) external perturbation is calculated under which the strange attractor of the Lorenz system degenerates into a stable fixed point.
@article{ZVMMF_2006_46_8_a5,
     author = {A. I. Noarov},
     title = {Numerical stabilization of the {Lorenz} system by a~small external perturbation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1415--1422},
     year = {2006},
     volume = {46},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_8_a5/}
}
TY  - JOUR
AU  - A. I. Noarov
TI  - Numerical stabilization of the Lorenz system by a small external perturbation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2006
SP  - 1415
EP  - 1422
VL  - 46
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_8_a5/
LA  - ru
ID  - ZVMMF_2006_46_8_a5
ER  - 
%0 Journal Article
%A A. I. Noarov
%T Numerical stabilization of the Lorenz system by a small external perturbation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2006
%P 1415-1422
%V 46
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_8_a5/
%G ru
%F ZVMMF_2006_46_8_a5
A. I. Noarov. Numerical stabilization of the Lorenz system by a small external perturbation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 8, pp. 1415-1422. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_8_a5/

[1] Strannye attraktory, Mir, M., 1981 | MR

[2] Noarov A. I., “Otklik dinamicheskoi sistemy na maloe izmenenie pravoi chasti i konechnomernye analogi uravneniya Fokkera–Planka”, Zh. vychisl. matem. i matem. fiz., 45:7 (2005), 1237–1250 | MR | Zbl

[3] Zeeman E. C., “Stability of dynamical systems”, Nonlinearity, 1 (1988), 115–155 | DOI | MR | Zbl

[4] Noarov A. I., “Ob odnom dostatochnom uslovii suschestvovaniya statsionarnogo resheniya uravneniya Fokkera–Planka”, Zh. vychisl. matem. i matem. fiz., 37:5 (1997), 587–598 | MR | Zbl

[5] Noarov A. I., “Chislennoe issledovanie uravneniya Fokkera–Planka”, Zh. vychisl. matem. i matem. fiz., 39:8 (1999), 1337–1347 | MR | Zbl

[6] Emelyanov C. B., Korovin S. K., Novye tipy obratnoi svyazi, Fizmatlit, M., 1997 | MR