Rosenbrock schemes with complex coefficients for stiff and differential algebraic systems
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 8, pp. 1392-1414 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Many applied problems are described by differential algebraic systems. Complex Rosenbrock schemes are proposed for the numerical integration of differential algebraic systems by the $\varepsilon$-embedding method. The method is proved to converge quadratically. The scheme is shown to be applicable even to superstiff systems. The method makes it possible to perform computations with a guaranteed accuracy. An equation is derived that describes the leading term of the error in the method as a function of time. An algorithm extending the method to systems of differential equations for complex-valued functions is proposed. Examples of numerical computations are given.
@article{ZVMMF_2006_46_8_a4,
     author = {A. B. Alshin and E. A. Alshina and N. N. Kalitkin and A. B. Koryagina},
     title = {Rosenbrock schemes with complex coefficients for stiff and differential algebraic systems},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1392--1414},
     year = {2006},
     volume = {46},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_8_a4/}
}
TY  - JOUR
AU  - A. B. Alshin
AU  - E. A. Alshina
AU  - N. N. Kalitkin
AU  - A. B. Koryagina
TI  - Rosenbrock schemes with complex coefficients for stiff and differential algebraic systems
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2006
SP  - 1392
EP  - 1414
VL  - 46
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_8_a4/
LA  - ru
ID  - ZVMMF_2006_46_8_a4
ER  - 
%0 Journal Article
%A A. B. Alshin
%A E. A. Alshina
%A N. N. Kalitkin
%A A. B. Koryagina
%T Rosenbrock schemes with complex coefficients for stiff and differential algebraic systems
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2006
%P 1392-1414
%V 46
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_8_a4/
%G ru
%F ZVMMF_2006_46_8_a4
A. B. Alshin; E. A. Alshina; N. N. Kalitkin; A. B. Koryagina. Rosenbrock schemes with complex coefficients for stiff and differential algebraic systems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 8, pp. 1392-1414. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_8_a4/

[1] B. van der Pol., “On relaxation oscillations”, Philos. Mag., 2 (1926), 978–992 | Zbl

[2] Dorodnitsyn A. A., “Asimptoticheskoe reshenie uravneniya Van-der-Polya”, Prikl. matem. i mekhan., 11 (1947), 313–328

[3] Khairer E., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Zhestkie i differentsialno-algebraicheskie zadachi, Mir, M., 1999

[4] Gridin V. N., Mikhailov V. B., Kupriyanov G. A., Mikhailov K. V., “Ustoichivye chislennye metody resheniya sverkhzhestkikh differentsialno-algebraicheskikh sistem uravnenii”, Matem. modelirovanie, 15:10 (2003), 35–50 | MR | Zbl

[5] Gear C., Numerical initial value problems in ordinary differential equations, Prentice Hall, 1971, 253 pp. | MR | Zbl

[6] Kalitkin H. H., “Chislennye metody resheniya zhestkikh sistem”, Matem. modelirovanie, 7:5 (1995), 8–11 | Zbl

[7] Zhirkov P. D., “$L$-Ustoichivost diagonalno-neyavnykh skhem Runge–Kutty i metodov Rozenbroka”, Zh. vychisl. matem. i matem. fiz., 31:9 (1992), 1422–1432

[8] Rosenbrock H. H., “Some general implicit processes for the numerical solution of differential equations”, Comput. J., 5:4 (1963), 329–330 | DOI | MR | Zbl

[9] Novikov E. A., Odnoshagovye bezyteratsionnye metody resheniya zhestkikh sistem, Dis. $\dots$ dokt. fiz.-matem. nauk, VTs AN SSSR, Krasnoyarsk, 1991

[10] Guzhev D. S., Kalitkin H. H., “Optimalnaya skhema dlya paketa ROS4”, Matem. modelirovanie, 6:11 (1994), 128–138 | MR | Zbl

[11] Kalitkin H. H., Panchenko S. L., “Optimalnye skhemy dlya zhestkikh neavtonomnykh sistem”, Matem. modelirovanie, 11:6 (1999), 52–81 | MR

[12] Kalitkin H. H., Kuzmina L. V., Integrirovanie zhestkikh sistem differentsialnykh uravnenii, PreprintyNo 80, 90, IPMatem. AN SSSR, M., 1981 | MR

[13] Dnestrovskaya E. Yu., Kalitkin H. H., Ritus I. V., “Reshenie uravnenii v chastnykh proizvodnykh skhemami s kompleksnymi koeffitsientami”, Matem. modelirovanie, 3:9 (1991), 114–127 | MR

[14] Guzhev D. S., Kalitkin H. H., “Uravnenie Byurgersa – test dlya chislennykh metodov”, Matem. modelirovanie, 7:4 (1995), 99–127 | MR

[15] Kalitkin H. H., Alshin A. B., Alshina E. A., Rogov B. V., Vychisleniya na kvaziravnomernykh setkakh, Fizmatlit, M., 2005

[16] Roche M., “Rosenbrock methods for differential algebraic equations”, Numer Math., 52 (1988), 45–63VI.4 | DOI | MR

[17] Ilin B. A., Poznyak E. G., Osnovy matematicheskogo analiza, Ch. I, Fizmatlit, M., 2002

[18] Ascher U. M., Ruuth S. J., Spiteri R. J., “Implicit-explicit Runge–Kutta methods for time-dependent partial differential equation”, Appl. Numer. Math., 25 (1997), 151–167 | DOI | MR | Zbl

[19] Cox S. M., Matthews P. C., “Exponential time differencing for stiff systems”, J. Comput. Phys., 176 (2002), 430–455 | DOI | MR | Zbl

[20] Rentrop P., Roche M., Steinebach G., “The application of Rosenbrock–Wanner type methods with stepsize control in differential-algebraic equations”, Numer. Math., 55 (1989), 545–563 | DOI | MR | Zbl

[21] Sivashinsky G. I., “Nonlirear analysis of hydrodynamics instability in laminar flames. I: Derivation of basic equations”, Acta Astronaut., 4 (1977), 1177–1206 | DOI | MR | Zbl

[22] Thual O., Frich U., Henon M., “Application of pole decomposition to an equation governing the dynamics of wrinkled flame fronts”, J. Phys., 46 (1985), 1485–1494