Newton-type methods for constrained optimization with nonregular constraints
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 8, pp. 1369-1391 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The most important classes of Newton-type methods for solving constrained optimization problems are discussed. These are the sequential quadratic programming methods, active set methods, and semismooth Newton methods for Karush–Kuhn–Tucker systems. The emphasis is placed on the behavior of these methods and their special modifications in the case where assumptions concerning constraint qualifications are relaxed or altogether dropped. Applications to optimization problems with complementarity constraints are examined.
@article{ZVMMF_2006_46_8_a3,
     author = {M. M. Golishnikov and A. F. Izmailov},
     title = {Newton-type methods for constrained optimization with nonregular constraints},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1369--1391},
     year = {2006},
     volume = {46},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_8_a3/}
}
TY  - JOUR
AU  - M. M. Golishnikov
AU  - A. F. Izmailov
TI  - Newton-type methods for constrained optimization with nonregular constraints
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2006
SP  - 1369
EP  - 1391
VL  - 46
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_8_a3/
LA  - ru
ID  - ZVMMF_2006_46_8_a3
ER  - 
%0 Journal Article
%A M. M. Golishnikov
%A A. F. Izmailov
%T Newton-type methods for constrained optimization with nonregular constraints
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2006
%P 1369-1391
%V 46
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_8_a3/
%G ru
%F ZVMMF_2006_46_8_a3
M. M. Golishnikov; A. F. Izmailov. Newton-type methods for constrained optimization with nonregular constraints. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 8, pp. 1369-1391. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_8_a3/

[1] Izmailov A. F., “O metodakh Lagranzha dlya otyskaniya vyrozhdennykh reshenii zadach na uslovnyi ekstremum”, Zh. vychisl. matem. i matem. fiz., 36:4 (1996), 10–17 | MR | Zbl

[2] Wright S. J., “Superlinear convergence of a stabilized SQP method to a degenerate solution”, Comput. Optimizat. and Appl., 11 (1998), 253–275 | DOI | MR | Zbl

[3] Hager W. W., “Stabilized sequential quadratic programming”, Comput. Optimizat. Appl., 12 (1999), 253–273 | DOI | MR | Zbl

[4] Hager W. W., Gowda M. S., “Stability in the presence of degeneracy and error estimation”, Math. Program., 85 (1999), 181–192 | DOI | MR | Zbl

[5] Fischer A., “Modified Wilson's method for nonlinear programs with nonunique multipliers”, Math. Operat. Res., 24 (1999), 699–727 | DOI | MR | Zbl

[6] Qi L., Wei Z., “On the constant positive linear dependence condition and its application to SQP methods”, SIAM J. Optimizat., 10:4 (2000), 963–981 | DOI | MR | Zbl

[7] Ralph D., Wright S. J., “Superlinear convergence of an interior-point method despite dependent constraints”, Math. Operat. Res., 25 (2000), 179–194 | DOI | MR | Zbl

[8] Anitescu M., “Degenerate nonlinear programming with a quadratic growth condition”, SIAM J. Optimizat., 10 (2000), 1116–1135 | DOI | MR | Zbl

[9] Anitescu M., Nonlinear programs with unbounded Lagrange multiplier sets, Preprint No ANL/MCS-P796-0200, Math. and Comput. Sci. Div., Argonne Nat. Lab., Argonne, 2000

[10] Li D.-H., Qi L., Stabilized SQP method via linear equations, Appl. math. techn. rept. AMR00/5, Univ. New South Wales, Sydney, 2000

[11] Fischer A., “Local behaviour of an iterative framework for generalized equations with nonisolated solutions”, Math. Program., 94 (2002), 91–124 | DOI | MR | Zbl

[12] Anitescu M., “A superlinearly convergent sequential quadratically constrained quadratic programming algorithm for degenerate nonlinear programming”, SIAM J. Optimizat., 12 (2002), 949–978 | DOI | MR | Zbl

[13] Anitescu M., “On the rate of convergence of sequential quadratic programming with nondifferentiable exact penalty function in the presence of constrain degeneracy”, Math. Program., 92 (2002), 359–386 | DOI | MR | Zbl

[14] Wright S. J., “Modifying SQP for degenerate problems”, SIAM J. Optimizat., 13 (2002), 470–497 | DOI | MR | Zbl

[15] Wright S. J., “Constraint identification and algorithm stabilization for degenerate nonlinear programs”, Math. Program., 95 (2003), 137–160 | DOI | MR | Zbl

[16] Izmailov A. F., Solodov M. B., Chokparov K. M., “Globalno skhodyaschiesya algoritmy nyutonovskogo tipa dlya zadach optimizatsii bez trebovaniya regulyarnosti ogranichenii”, Vopr. modelirovaniya i analiza v zadachakh prinyatiya reshenii, VTs RAN, M., 2003, 63–82

[17] Izmailov A. F., Solodov M. V., “Newton-type methods for optimization problems without constraint qualifications”, SIAM J. Optimizat., 15:1 (2004), 210–228 | DOI | MR | Zbl

[18] Izmailov A. F., “Ob analiticheskoi i vychislitelnoi ustoichivosti kriticheskikh mnozhitelei Lagranzha”, Zh. vychisl. matem. i matem. fiz., 45:6 (2005), 966–982 | MR | Zbl

[19] Wright S. J., “An algorithm for degenerate nonlinear programming with rapid local convergence”, SIAM J. Optimizat., 15 (2005), 673–696 | DOI | MR | Zbl

[20] Luo Z.-Q., Pang J.-S., Ralph D., Mathematical programs with equilibrium constraints, Cambridge Univ. Press, Cambridge, 1996 | MR

[21] Outrata J. V., Kocvara M., Zowe J., Nonsmooth approach to optimization problems with equilibrium constraints: Theory, applications and numerical results, Kluwer Acad. Publ., Boston, 1998 | MR | Zbl

[22] Scholtes S., Stohr M., “Exact penalization of mathematical programs with equilibrium constraints”, SIAM J. Control Optimizat., 37 (1999), 617–652 | DOI | MR | Zbl

[23] Scheel H., Scholtes S., “Mathematical programs with complementarity constraints: stationarity, optimality and sensitivity”, Math. Operat. Res., 25 (2000), 1–22 | DOI | MR | Zbl

[24] Anitescu M., On solving mathematical programs with complementarity constraints as nonlinear programs, Preprint No ANL/MCS-P864-1200, Math. and Comput. Sci. Div., Argonne Nat. Lab., Argonne, 2000

[25] Scholtes S., Stöhr M., “How stringent is the linear independence assumption for mathematical programs with complementarity constraints?”, Math. Operat. Res., 26 (2001), 851–863 | DOI | MR | Zbl

[26] Fletcher R., Leyffer S., Ralph D., Scholtes S., Local convergence of SQP methods for mathematical programs with equilibrium constraints, Numer. Analys. Rept. NA/209, Dept. Math., Univ. Dundee, Dundee, 2002

[27] Anitescu M., “On using the elastic mode in nonlinear programming approaches to mathematical programs with complementarity constraints”, SIAM J. Optimizat., 15:4 (2005), 1203–1236 | DOI | MR | Zbl

[28] Anitescu M., Tseng P., Wright S. J., Elastic-mode algorithms for mathematical programs with equilibrium constraints: global convergence and stationarity properties, Preprint No ANL/MCS-P1242-0405, Math. and Comput. Sci. Div., Argonne Nat. Lab., Argonne, 2005 | MR

[29] Izmailov A. F., Chuvstvitelnost v optimizatsii, Fizmatlit, M., 2006

[30] Achtziger W., Kanzow C., Mathematical programs with vanishing constraints: optimality conditions and constraint qualifications, Preprint No 263, Inst. Appl. Math. and Statist., Würzburg, 2005 | MR

[31] Izmailov A. F., Solodov M. B., Chislennye metody optimizatsii, Fizmatlit, M., 2003. | MR

[32] Ortega Dzh., Reinboldt V., Iteratsionnye metody resheniya nelineinykh sistem uravnenii so mnogimi neizvestnymi, Mir, M., 1975 | MR

[33] Bonnans J. F., “Local analysis of Newton-type methods for variational inequalities and nonlinear programming”, Appl. Math. Optimizat., 29 (1994), 161–186 | DOI | MR | Zbl

[34] Facchinei F., Fischer A., Kanzow C., “On the accurate identification of active constraints”, SIAM J. Optimizat., 9 (1999), 14–32 | DOI | MR

[35] Gill P. E., Murray W., Saunders M., “SNOPT: an SQP algorithm for large-scale constrained optimization”, SIAM Rev., 47:1 (2005), 14–32 | DOI | MR

[36] Izmailov A. F., Tretyakov A. A., 2-regulyarnye resheniya nelineinykh zadach. Teoriya i chislennye metody, Fizmatlit, M., 1999 | MR

[37] Brezhneva O. A., Izmailov A. F., “O postroenii opredelyayuschikh sistem dlya otyskaniya osobykh reshenii nelineinykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 42:1 (2002), 10–22 | MR | Zbl

[38] Pshenichnyi B. N., Danilin Yu. M., Chislennye metody v ekstremalnykh zadachakh, Nauka, M., 1975 | MR

[39] Hu X. M., Ralph D., “Convergence of a penalty method for mathematical problems with complementarity constraints”, J. Optimizat. Theor. and Appl., 123:2 (2004), 365–390 | DOI | MR

[40] Fletcher R., Leyffer S., “Solving mathematical programs with complementarity constraints as nonlinear programs”, Optimizat. Meth. Software, 19:1 (2004), 15–40 | DOI | MR | Zbl

[41] Fletcher R., Leyffer S., “Nonlinear programming without a penalty function”, Math. Program., 91 (2002), 239–270 | DOI | MR

[42] Leyffer S., MacMPEC: AMPL collection of MPECs http://www.mcs.anl.gov/~leyffer/MacMPEC/

[43] Andreani R., Martínez J. M., “On the solution of mathematical programming problems with equilibrium constraints”, Math. Meth. Operat. Res., 54 (2001), 345–358 | DOI | MR | Zbl

[44] Hock W., Schittkowski K., Test examples for nonlinear programming codes, Lect. Notes in Econom. and Math. Systems, 187, Springer, Berlin, 1981 | MR | Zbl

[45] Arutyunov A. B., “Vozmuscheniya ekstremalnykh zadach s ogranicheniyami i neobkhodimye usloviya optimalnosti”, Itogi nauki i tekhn. Matem. analiz, 27, VINITI, M., 1989, 147–235 | MR

[46] Baccari A., Trad A., “On the classical necessary second-order optimality conditions in the presence of equality and inequality constraints”, SIAM J. Optimizat., 15:2 (2004), 394–408 | DOI | MR | Zbl

[47] Robinson S. M., “Generalized equations and their solutions, Part II: Applications to nonlinear programming”, Math. Program. Study, 19 (1982), 200–221 | MR | Zbl

[48] Arutyunov A. B., Usloviya ekstremuma. Anormalnye i vyrozhdennye zadachi, Faktorial, M., 1997 | MR | Zbl

[49] Jiang H., Ralph D., QPECgen, a MATLAB generator for mathematical programs with quadratic objectives and affine variational inequality constraints, Techn. Rept. Melbourne, Univ. Melbourne, Dept. Math., 1997