Cubature formulas for a disk that are invariant under groups of transformations of regular polygons into themselves
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 7, pp. 1211-1218 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A method for constructing cubature formulas of different degrees of accuracy that are invariant under the groups of transformations of regular polygons into themselves is proposed. The cubature sum can contain powers of the Laplace operator applied to the integrand at the origin.
@article{ZVMMF_2006_46_7_a4,
     author = {\`E. A. Shamsiev},
     title = {Cubature formulas for a~disk that are invariant under groups of transformations of regular polygons into themselves},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1211--1218},
     year = {2006},
     volume = {46},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_7_a4/}
}
TY  - JOUR
AU  - È. A. Shamsiev
TI  - Cubature formulas for a disk that are invariant under groups of transformations of regular polygons into themselves
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2006
SP  - 1211
EP  - 1218
VL  - 46
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_7_a4/
LA  - ru
ID  - ZVMMF_2006_46_7_a4
ER  - 
%0 Journal Article
%A È. A. Shamsiev
%T Cubature formulas for a disk that are invariant under groups of transformations of regular polygons into themselves
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2006
%P 1211-1218
%V 46
%N 7
%U http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_7_a4/
%G ru
%F ZVMMF_2006_46_7_a4
È. A. Shamsiev. Cubature formulas for a disk that are invariant under groups of transformations of regular polygons into themselves. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 7, pp. 1211-1218. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_7_a4/

[1] Coxeter H. S. M., “The product of the generators of a finite group generated by reflections”, Duke Math. J., 18:4 (1951), 765–782 | DOI | MR | Zbl

[2] Mysovskikh I. P., Interpolyatsionnye kubaturnye formuly, Nauka, M., 1981 | MR | Zbl

[3] Lebedev V. I., “O kvadraturakh na sfere naivysshei algebraicheskoi stepeni tochnosti”, Teoriya kubaturnykh f-l i prilozh. funkts. analiza k nekotorym zadacham matem. fiz., Novosibirsk, 1973, 31–35

[4] Lebedev V. I., “Znacheniya uzlov i vesov kvadraturnykh formul tipa Gaussa–Markova dlya sfery ot 9-go do 17-go poryadka tochnosti, invariantnykh otnositelno gruppy oktaedra s inversiei”, Zh. vychisl. matem. i matem. fiz., 15:1 (1975), 48–54 | Zbl

[5] Konyaev S. I., “Kvadraturnye formuly na sfere, invariantnye otnositelno gruppy ikosaedra”, Vopr. vychisl. i prikl. matem., 32, Tashkent, 1975, 69–76

[6] Konyaev S. I., “Kvadraturnye formuly devyatogo poryadka, invariantnye otnositelno gruppy ikosaedra”, Dokl. AN SSSR, 233:5 (1977), 784–787 | MR | Zbl

[7] Shamsiev E. A., “Kubaturnye formuly dlya shara i prostranstva”, Vopr. vychisl. i prikl. matem., 69, Tashkent, 1982, 3–12 | Zbl

[8] Ignatenko V. F., “O ploskikh algebraicheskikh krivykh s osyami simmetrii”, Ukr. geometr. sbornik, 21, Kiev, 1978, 31–33 | MR | Zbl