Cubature formulas for a disk that are invariant under groups of transformations of regular polygons into themselves
    
    
  
  
  
      
      
      
        
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 7, pp. 1211-1218
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              A method for constructing cubature formulas of different degrees of accuracy that are invariant under the groups of transformations of regular polygons into themselves is proposed. The cubature sum can contain powers of the Laplace operator applied to the integrand at the origin.
            
            
            
          
        
      @article{ZVMMF_2006_46_7_a4,
     author = {\`E. A. Shamsiev},
     title = {Cubature formulas for a~disk that are invariant under groups of transformations of regular polygons into themselves},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1211--1218},
     publisher = {mathdoc},
     volume = {46},
     number = {7},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_7_a4/}
}
                      
                      
                    TY - JOUR AU - È. A. Shamsiev TI - Cubature formulas for a disk that are invariant under groups of transformations of regular polygons into themselves JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2006 SP - 1211 EP - 1218 VL - 46 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_7_a4/ LA - ru ID - ZVMMF_2006_46_7_a4 ER -
%0 Journal Article %A È. A. Shamsiev %T Cubature formulas for a disk that are invariant under groups of transformations of regular polygons into themselves %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2006 %P 1211-1218 %V 46 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_7_a4/ %G ru %F ZVMMF_2006_46_7_a4
È. A. Shamsiev. Cubature formulas for a disk that are invariant under groups of transformations of regular polygons into themselves. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 7, pp. 1211-1218. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_7_a4/
