Cubature formulas for a disk that are invariant under groups of transformations of regular polygons into themselves
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 7, pp. 1211-1218

Voir la notice de l'article provenant de la source Math-Net.Ru

A method for constructing cubature formulas of different degrees of accuracy that are invariant under the groups of transformations of regular polygons into themselves is proposed. The cubature sum can contain powers of the Laplace operator applied to the integrand at the origin.
@article{ZVMMF_2006_46_7_a4,
     author = {\`E. A. Shamsiev},
     title = {Cubature formulas for a~disk that are invariant under groups of transformations of regular polygons into themselves},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1211--1218},
     publisher = {mathdoc},
     volume = {46},
     number = {7},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_7_a4/}
}
TY  - JOUR
AU  - È. A. Shamsiev
TI  - Cubature formulas for a disk that are invariant under groups of transformations of regular polygons into themselves
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2006
SP  - 1211
EP  - 1218
VL  - 46
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_7_a4/
LA  - ru
ID  - ZVMMF_2006_46_7_a4
ER  - 
%0 Journal Article
%A È. A. Shamsiev
%T Cubature formulas for a disk that are invariant under groups of transformations of regular polygons into themselves
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2006
%P 1211-1218
%V 46
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_7_a4/
%G ru
%F ZVMMF_2006_46_7_a4
È. A. Shamsiev. Cubature formulas for a disk that are invariant under groups of transformations of regular polygons into themselves. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 7, pp. 1211-1218. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_7_a4/