A first-order continuous method for the Antipin regularization of monotone variational inequalities in a Banach space
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 7, pp. 1184-1194

Voir la notice de l'article provenant de la source Math-Net.Ru

The concept of a generalized projection operator onto a convex closed subset of a Banach space is modified. This operator is used to construct a first-order continuous method for the Antipin regularization of monotone variational inequalities in a Banach space. Sufficient conditions for the convergence of the method are found.
@article{ZVMMF_2006_46_7_a2,
     author = {I. P. Ryazantseva},
     title = {A~first-order continuous method for the {Antipin} regularization of monotone variational inequalities in {a~Banach} space},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1184--1194},
     publisher = {mathdoc},
     volume = {46},
     number = {7},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_7_a2/}
}
TY  - JOUR
AU  - I. P. Ryazantseva
TI  - A first-order continuous method for the Antipin regularization of monotone variational inequalities in a Banach space
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2006
SP  - 1184
EP  - 1194
VL  - 46
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_7_a2/
LA  - ru
ID  - ZVMMF_2006_46_7_a2
ER  - 
%0 Journal Article
%A I. P. Ryazantseva
%T A first-order continuous method for the Antipin regularization of monotone variational inequalities in a Banach space
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2006
%P 1184-1194
%V 46
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_7_a2/
%G ru
%F ZVMMF_2006_46_7_a2
I. P. Ryazantseva. A first-order continuous method for the Antipin regularization of monotone variational inequalities in a Banach space. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 7, pp. 1184-1194. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_7_a2/