A first-order continuous method for the Antipin regularization of monotone variational inequalities in a Banach space
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 7, pp. 1184-1194
Voir la notice de l'article provenant de la source Math-Net.Ru
The concept of a generalized projection operator onto a convex closed subset of a Banach space is modified. This operator is used to construct a first-order continuous method for the Antipin regularization of monotone variational inequalities in a Banach space. Sufficient conditions for the convergence of the method are found.
@article{ZVMMF_2006_46_7_a2,
author = {I. P. Ryazantseva},
title = {A~first-order continuous method for the {Antipin} regularization of monotone variational inequalities in {a~Banach} space},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1184--1194},
publisher = {mathdoc},
volume = {46},
number = {7},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_7_a2/}
}
TY - JOUR AU - I. P. Ryazantseva TI - A first-order continuous method for the Antipin regularization of monotone variational inequalities in a Banach space JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2006 SP - 1184 EP - 1194 VL - 46 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_7_a2/ LA - ru ID - ZVMMF_2006_46_7_a2 ER -
%0 Journal Article %A I. P. Ryazantseva %T A first-order continuous method for the Antipin regularization of monotone variational inequalities in a Banach space %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2006 %P 1184-1194 %V 46 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_7_a2/ %G ru %F ZVMMF_2006_46_7_a2
I. P. Ryazantseva. A first-order continuous method for the Antipin regularization of monotone variational inequalities in a Banach space. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 7, pp. 1184-1194. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_7_a2/