Numerical simulation of discontinuous waves propagating over a dry bed
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 7, pp. 1322-1344 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A numerical algorithm is proposed for simulating the propagation of discontinuous waves over a dry bed governed by the shallow water equations in the first approximation. The algorithm is based on a modified conservation law of total momentum that takes into account the concentrated momentum loss associated with the formation of local eddy structures within the framework of the long-wave approximation. The modified conservation law involves a heuristic parameter that is chosen so as to agree with laboratory experiments. Numerical results are presented for the formation, propagation, and transformation of a discontinuous wave arising in a complete or partial (in the planned case) collapse of a dam over a bed with a horizontal or sloping bottom or a bottom with a local obstacle in the tailwater area.
@article{ZVMMF_2006_46_7_a15,
     author = {N. M. Borisova and V. V. Ostapenko},
     title = {Numerical simulation of discontinuous waves propagating over a~dry bed},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1322--1344},
     year = {2006},
     volume = {46},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_7_a15/}
}
TY  - JOUR
AU  - N. M. Borisova
AU  - V. V. Ostapenko
TI  - Numerical simulation of discontinuous waves propagating over a dry bed
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2006
SP  - 1322
EP  - 1344
VL  - 46
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_7_a15/
LA  - ru
ID  - ZVMMF_2006_46_7_a15
ER  - 
%0 Journal Article
%A N. M. Borisova
%A V. V. Ostapenko
%T Numerical simulation of discontinuous waves propagating over a dry bed
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2006
%P 1322-1344
%V 46
%N 7
%U http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_7_a15/
%G ru
%F ZVMMF_2006_46_7_a15
N. M. Borisova; V. V. Ostapenko. Numerical simulation of discontinuous waves propagating over a dry bed. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 7, pp. 1322-1344. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_7_a15/

[1] Stoker Dzh. Dzh., Volny na vode, Izd-vo inostr. lit., M., 1959

[2] Voevodin A. F., Shugrin S. M., Metody resheniya odnomernykh evolyutsionnykh sistem, Nauka SO, Novosibirsk, 1993 | MR

[3] Kulikovskii A. G., Pogorelov N. V., Semenov A. Yu., Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii, Fizmatlit, M., 2001 | MR

[4] Ostapenko V. V., Giperbolicheskie sistemy zakonov sokhraneniya i ikh prilozhenie k teorii melkoi vody (kurs lektsii), Izd-vo NGU, Novosibirsk, 2004

[5] Vasilev O. F., Gladyshev M. T., “O raschete preryvnykh voln v otkrytykh ruslakh”, Izv. AN SSSR. Mekhan. zhidkosti i gaza, 1966, no. 6

[6] Ostapenko V. V., “O skvoznom raschete preryvnykh voln v otkrytykh ruslakh”, Zh. vychisl. matem. i matem. fiz., 33:5 (1993), 743–752 | MR | Zbl

[7] Belikov V. V., Semënov A. Yu., “Chislennyi metod raspada razryva dlya resheniya uravnenii teorii melkoi vody”, Zh. vychisl. matem. i matem. fiz., 37:8 (1997), 1006–1019 | MR | Zbl

[8] Voevodin A. F., Ostapenko V. V., “O raschete preryvnykh voln v otkrytykh ruslakh”, Sibirskii zh. vychisl. matem., 3:4 (2000), 305–321 | Zbl

[9] Delis A., Skeels C. P., “TVD schemes for open channel flow”, Int. J. Numer. Meth. Fluids, 26 (1998), 791–809 | 3.0.CO;2-N class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | Zbl

[10] Wang J., Ni H., He Y., “Finite-difference TVD schemes for computation of dam-break problems”, J. Hydrology. Engng. ASCE, 126 (2000), 253–262 | DOI

[11] Gottardi G., Venutelli M., “Central schemes for open channel flow”, Int. J. Numer. Meth. Fluids, 41 (2003), 841–861 | DOI | Zbl

[12] Shokin Yu. I., Chubarov L. B., Marchuk A. G., Simonov K. V., Vychislitelnyi eksperiment v probleme tsunami, Nauka, SO, Novosibirsk, 1989

[13] Ritter A., “Die Fortpflanzung der Wasserwellen”, Z. Vereines dtsch. Ingr., 36 (1892)

[14] Dressler R. F., “Hydraulic resistance effect upon the dam-break functions”, J. Res. N.B.S., 49:3 (1952), 217–225 | MR

[15] Whitham G. B., “The effects of hydraulic resistance in the dam-break problem”, Proc. Roy. Soc. Ser. A, 227:1170 (1955), 399–407 | DOI | MR | Zbl

[16] Sudobicher V. G., Shugrin S. M., “Dvizhenie potoka vody po sukhomu ruslu”, Izv. SO AN SSSR. Ser. tekhn. nauk, 13:3 (1968), 116–122

[17] Martin J. C., Moyce W. J., “An experimental study of the collaps of liquid columns on a rigid horizontal plane”, Philos. Trans. Roy. Soc. London, 244 (1952), 312–324 | DOI

[18] Dressier R. F., “Comparison of theories and experiments for the hydraulic dam-break wave”, Internat. Assoc. Sci. Hydrology, 3:38 (1954), 319–328

[19] Stansby P. K., Chegini A., Barnes T. C. D., “The initial stages of dam-break flow”, J. Fluid Mech., 374 (1998), 407–424 | DOI | MR | Zbl

[20] Bukreev V. I., Gusev A. B., Malysheva A. A., Malysheva I. A., “Eksperimentalnaya proverka gazo-gidravlicheskoi analogii na primere zadachi o razrushenii plotiny”, Izv. RAN. Mekhan. zhidkosti i gaza, 2004, no. 5, 143–152 | Zbl

[21] Bukreev V. I., Gusev A. B., “Nachalnaya stadiya generatsii voln pri razrushenii plotiny”, Dokl. AN SSSR, 401:5 (2005), 619–622

[22] Colicchio G., Colagrossi A., Greco M., Landrini M., “Free-surface flow after a dam-break: a comparative study”, Shiffstechnik (Ship technol. res.), 49:3 (2002), 95–104

[23] Rozhdestvenskii B. L.,Yanenko H. H., Sistemy kvazilineinykh uravnenii i ikh prilozheniya k gazovoi dinamike, Nauka, M., 1978 | MR

[24] Friedrichs K. O., Lax P. D., “Systems of conservation equation with convex extension”, Proc. Nat. Acad. Sci: USA, 68:8 (1971), 1686–1688 | DOI | MR | Zbl

[25] Lax P. D., Hyperbolic systems of conservation laws and the mathematical theory of shock waves, Soc. Industr. and Appl. Math., Philadelphia, 1972 | MR | Zbl

[26] Ostapenko V. V., “O razryvnykh resheniyakh uravnenii melkoi mody nad ustupom dna”, Prikl. mekhan. i tekhn. fiz., 43:6 (2002), 62–74 | MR | Zbl

[27] Schacht W., Vorozhtsov E. V., Voevodin A. F., Ostapenko V. V., “Numerical modeling of hydraulic jumps in a spiral channel with rectangular cross section”, Fluid Dynamics Res., 31 (2002), 185–213 | DOI

[28] Marchuk G. I., Metody rasschepleniya, Nauka, M., 1988 | MR

[29] Ivanov M. Ya., Kraiko A. N., “Ob approksimatsii razryvnykh reshenii pri ispolzovanii raznostnykh skhem skvoznogo scheta”, Zh. vychisl. matem. i matem. fiz., 18:3 (1978), 780–783

[30] Ostapenko V. V., “O postroenii raznostnykh skhem povyshennoi tochnosti dlya skvoznogo rascheta nestatsionarnykh udarnykh voln”, Zh. vychisl. matem. i matem. fiz., 40:12 (2000), 1857–1874 | MR | Zbl

[31] Ostapenko V. V., “Chislennoe modelirovanie volnovykh techenii, vyzvannykh skhodom beregovogo opolznya”, Prikl. matem. i tekhn. fiz., 40:4 (1999), 109–117 | Zbl

[32] Ostapenko V. V., “Techeniya, voznikayuschie pri razrushenii plotiny nad stupenkoi dna”, Prikl. matem. i tekhn. fiz., 44 (2003), 51–63 | MR | Zbl

[33] Ostapenko V. V., “Techeniya, voznikayuschie pri razrushenii plotiny nad ustupom dna”, Prikl. matem. i tekhn. fiz., 44:6 (2003), 107–122 | MR | Zbl

[34] Bukreev V. I., Gusev A. B., Ostapenko V. V., “Raspad razryva svobodnoi poverkhnosti zhidkosti nad ustupom dna kanala”, Iz. RAN. Mekhan. zhidkosti i gaza, 2003, no. 6, 72–83 | Zbl

[35] Bukreev V. I., Gusev A. B., Ostapenko V. V., “Volny v otkrytom kanale, obrazuyuschiesya pri udalenii schita pered nerovnym dnom tipa shelfa”, Vodnye resursy, 31:5 (2004), 540–546

[36] Ostapenko V. V., “Ustoichivye udarnye volny v dvukhsloinoi “melkoi vode””, Prikl. matem. i mekhan., 65:1 (2001), 94–113 | MR | Zbl