@article{ZVMMF_2006_46_7_a13,
author = {A. S. Lebedev and M. P. Fedoruk and O. V. Shtyrina},
title = {Finite-volume algorithm for solving the time-dependent {Maxwell} equations on unstructured meshes},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1286--1301},
year = {2006},
volume = {46},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_7_a13/}
}
TY - JOUR AU - A. S. Lebedev AU - M. P. Fedoruk AU - O. V. Shtyrina TI - Finite-volume algorithm for solving the time-dependent Maxwell equations on unstructured meshes JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2006 SP - 1286 EP - 1301 VL - 46 IS - 7 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_7_a13/ LA - ru ID - ZVMMF_2006_46_7_a13 ER -
%0 Journal Article %A A. S. Lebedev %A M. P. Fedoruk %A O. V. Shtyrina %T Finite-volume algorithm for solving the time-dependent Maxwell equations on unstructured meshes %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2006 %P 1286-1301 %V 46 %N 7 %U http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_7_a13/ %G ru %F ZVMMF_2006_46_7_a13
A. S. Lebedev; M. P. Fedoruk; O. V. Shtyrina. Finite-volume algorithm for solving the time-dependent Maxwell equations on unstructured meshes. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 7, pp. 1286-1301. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_7_a13/
[1] Yee K. S., “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media”, IEEE Trans. Antennas and Propagat., 17 (1966), 585–589
[2] Taflove A., Computational electrodynamics. The finite-difference time-domain method, Artech House, Boston, 1995 | MR | Zbl
[3] A. Taflove (ed.), Advances in computational electrodynamics. The finite-difference time-domain method, Artech House, Boston, 1998 | MR | Zbl
[4] Taflove A., Hagness S. C., Computational electrodynamics. The finite-difference time-domain method, Sec. ed., Artech House, Boston, 2000 | MR | Zbl
[5] Sullivan D. M., Electromagnetic simulation using the FDTD method, IEEE Press, New York, 2000
[6] Assous F., Degond P., Segre J., “Numerical approximation of the Maxwell equations in inhomogeneous media by P1 conforming finite element method”, J. Comput. Phys., 128 (1996), 363–380 | DOI | MR | Zbl
[7] Amhrosiano J. J., Brandon S. T., Lohner R., DeVore C. R., “Electromagnetics via the Taylor–Galerkin finite element method on unstructured grids”, J. Comput. Phys., 110 (1994), 310–319 | DOI
[8] Hiptmair R., “Finite elements in computational electromagnetism”, Acta Numerica, 2002, 237–330 | MR
[9] Ziming Chen, Qiang Du, Jun Zou, “Finite element methods with matching and nonmatching meshes for Maxwell equations with discontinuous coefficients”, SIAM J. Numer. Analys., 137:5 (2000), 1542–1570 | MR
[10] Hermeline F., “Two coupled particle-finite volume methods Using Delaunay–Voronoi meshes for the approximation of Vlasov–Poisson and Vlasov–Maxwell Equations”, J. Comput. Phys., 106 (1993), 1–18 | DOI | Zbl
[11] Madsen N. K., Ziolkowsky R. W., “A three-dimensional modified finite volume technique for Maxwell's equations”, Elektromagnetics, 10 (1990), 147–161 | DOI
[12] Shankar V., Hall W. F., Mohammadian A. H., “A time-domain differential solver for electromagnetic scattering problem”, Proc. IEEE, 77 (1989), 709–721 | DOI
[13] Cioni J. P., Fezoui L., Issautier D., “High order upwind schemes for solving time-domain Maxwell equations”, La Rech. Aěrospatiale, 5 (1994), 319–328 | MR
[14] Buck J. A., Fundamentals of optical fibers, John Wiley and Sons, Inc., New York, 1995 | Zbl