Finite-volume algorithm for solving the time-dependent Maxwell equations on unstructured meshes
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 7, pp. 1286-1301 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A finite-volume method is proposed for solving the time-dependent Maxwell equations on unstructured triangular meshes. The results of test computations show that the method has a second-order convergence rate for homogeneous media and a close-to-second-order convergence rate for media with spatially discontinuous permittivity.
@article{ZVMMF_2006_46_7_a13,
     author = {A. S. Lebedev and M. P. Fedoruk and O. V. Shtyrina},
     title = {Finite-volume algorithm for solving the time-dependent {Maxwell} equations on unstructured meshes},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1286--1301},
     year = {2006},
     volume = {46},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_7_a13/}
}
TY  - JOUR
AU  - A. S. Lebedev
AU  - M. P. Fedoruk
AU  - O. V. Shtyrina
TI  - Finite-volume algorithm for solving the time-dependent Maxwell equations on unstructured meshes
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2006
SP  - 1286
EP  - 1301
VL  - 46
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_7_a13/
LA  - ru
ID  - ZVMMF_2006_46_7_a13
ER  - 
%0 Journal Article
%A A. S. Lebedev
%A M. P. Fedoruk
%A O. V. Shtyrina
%T Finite-volume algorithm for solving the time-dependent Maxwell equations on unstructured meshes
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2006
%P 1286-1301
%V 46
%N 7
%U http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_7_a13/
%G ru
%F ZVMMF_2006_46_7_a13
A. S. Lebedev; M. P. Fedoruk; O. V. Shtyrina. Finite-volume algorithm for solving the time-dependent Maxwell equations on unstructured meshes. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 7, pp. 1286-1301. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_7_a13/

[1] Yee K. S., “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media”, IEEE Trans. Antennas and Propagat., 17 (1966), 585–589

[2] Taflove A., Computational electrodynamics. The finite-difference time-domain method, Artech House, Boston, 1995 | MR | Zbl

[3] A. Taflove (ed.), Advances in computational electrodynamics. The finite-difference time-domain method, Artech House, Boston, 1998 | MR | Zbl

[4] Taflove A., Hagness S. C., Computational electrodynamics. The finite-difference time-domain method, Sec. ed., Artech House, Boston, 2000 | MR | Zbl

[5] Sullivan D. M., Electromagnetic simulation using the FDTD method, IEEE Press, New York, 2000

[6] Assous F., Degond P., Segre J., “Numerical approximation of the Maxwell equations in inhomogeneous media by P1 conforming finite element method”, J. Comput. Phys., 128 (1996), 363–380 | DOI | MR | Zbl

[7] Amhrosiano J. J., Brandon S. T., Lohner R., DeVore C. R., “Electromagnetics via the Taylor–Galerkin finite element method on unstructured grids”, J. Comput. Phys., 110 (1994), 310–319 | DOI

[8] Hiptmair R., “Finite elements in computational electromagnetism”, Acta Numerica, 2002, 237–330 | MR

[9] Ziming Chen, Qiang Du, Jun Zou, “Finite element methods with matching and nonmatching meshes for Maxwell equations with discontinuous coefficients”, SIAM J. Numer. Analys., 137:5 (2000), 1542–1570 | MR

[10] Hermeline F., “Two coupled particle-finite volume methods Using Delaunay–Voronoi meshes for the approximation of Vlasov–Poisson and Vlasov–Maxwell Equations”, J. Comput. Phys., 106 (1993), 1–18 | DOI | Zbl

[11] Madsen N. K., Ziolkowsky R. W., “A three-dimensional modified finite volume technique for Maxwell's equations”, Elektromagnetics, 10 (1990), 147–161 | DOI

[12] Shankar V., Hall W. F., Mohammadian A. H., “A time-domain differential solver for electromagnetic scattering problem”, Proc. IEEE, 77 (1989), 709–721 | DOI

[13] Cioni J. P., Fezoui L., Issautier D., “High order upwind schemes for solving time-domain Maxwell equations”, La Rech. Aěrospatiale, 5 (1994), 319–328 | MR

[14] Buck J. A., Fundamentals of optical fibers, John Wiley and Sons, Inc., New York, 1995 | Zbl