Approximate open boundary conditions for a class of hyperbolic equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 6, pp. 1058-1073 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Initial-boundary value problems formulated in spatially unbounded domains can be sometimes reduced to problems in their bounded subdomains by using the so-called open boundary conditions. These conditions are set on the surface separating the subdomain from the rest of the domain. One of the approaches to obtaining such a kind of conditions is based on an approximation of the kernels of the time convolution operators in the relations connecting the exact solution of the original problem and its derivatives on the open boundary. In this case, it is possible to considerably reduce the requirements for system resources required to solve numerically for a wide range of physical and engineering problems. Estimates of the perturbations of the exact solution due to the approximate conditions are obtained for a model problem with one space variable.
@article{ZVMMF_2006_46_6_a8,
     author = {A. R. Maikov},
     title = {Approximate open boundary conditions for a~class of hyperbolic equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1058--1073},
     year = {2006},
     volume = {46},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_6_a8/}
}
TY  - JOUR
AU  - A. R. Maikov
TI  - Approximate open boundary conditions for a class of hyperbolic equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2006
SP  - 1058
EP  - 1073
VL  - 46
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_6_a8/
LA  - ru
ID  - ZVMMF_2006_46_6_a8
ER  - 
%0 Journal Article
%A A. R. Maikov
%T Approximate open boundary conditions for a class of hyperbolic equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2006
%P 1058-1073
%V 46
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_6_a8/
%G ru
%F ZVMMF_2006_46_6_a8
A. R. Maikov. Approximate open boundary conditions for a class of hyperbolic equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 6, pp. 1058-1073. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_6_a8/

[1] Bobylev Yu. V., Kuzelev M. V., Rukhadze A. L., Sveshnikov A. G., “Nestatsionarnye partsialnye usloviya izlucheniya v zadachakh relyativistskoi silnotochnoi plazmennoi SVCh-elektroniki”, Fiz. plazmy, 25:7 (1999), 615–620 | MR

[2] Ginzburg N. S., Zavolskii H. A., Nusinovin G. S., Sergeev A. C., “Ustanovlenie avtokolebanii v elektronnykh SVCh generatorakh s difraktsionnym vyvodom izlucheniya”, Izv. vuzov. Ser. Radiofiz., 29:1 (1986), 106–114 | MR

[3] Urev M. V., “Granichnye usloviya dlya uravnenii Maksvella v sluchae proizvolnoi zavisimosti ot vremeni”, Zh. vychisl. matem. i matem. fiz., 37:12 (1997), 1489–1497 | MR | Zbl

[4] Maikov A. R., Sveshnikov A. G., “Usloviya izlucheniya dlya diskretnykh analogov nestatsionarnykh uravnenii Maksvella v sluchae neodnorodnoi sredy”, Zh. vychisl. matem. i matem. fiz., 35:3 (1995), 412–126 | MR

[5] Arnold A., Ehrhardt M., “Discrete transparent boundary conditions for wide angle parabolic equation in underwater acoustics”, J. Comput. Phys., 145 (1998), 611–638 | DOI | MR | Zbl

[6] Hagstrom T., “Radiation boundary conditions for the numerical simulation of waves”, Acta Numerica, 6 (1999), 47–106 | DOI | MR

[7] Hagstrom T., “New results on absorbing layers and radiation boundary conditions”, Lect. Notes Comput. Sci. Engng., 31, 2003, 1–42 | MR | Zbl

[8] Tsynkov S. V., “Numerical solution of problems on unbounded domains. A review”, Appl. Numer. Math., 27 (1998), 465–532 | DOI | MR | Zbl

[9] Givoli D., Neta B., High-order Higdon non-reflecting boundary conditions for the shallow water equations, Naval Postgraduate School: Monterey, CA, 30, NPS-MA-02-001, 2002

[10] Givoli D., Neta B., “High-order non-reflecting boundary conditions for dispersive waves”, Wave Motion, 37 (2003), 257–271 | DOI | MR | Zbl

[11] Sirenko Yu. K., Shestopalov V. P., Yashina H. P., “Novye metody dinamicheskoi lineinoi teorii otkrytykh volnovodnykh rezonatorov”, Zh. vychisl. matem. i matem. fiz., 37:7 (1997), 869–877 | MR | Zbl

[12] Alpert B., Greengard L., Hagstrom T., “Nonreflecting boundary conditions for the time-dependent wave equations”, J. Comput. Phys., 180 (2002), 270–296 | DOI | MR | Zbl

[13] Sofronov I. L., “Non-reflecting inflow and outflow in wind tunnel for transonic time-accurate simulation”, J. Math. Analys. and Appl., 221 (1998), 92–115 | DOI | MR | Zbl

[14] Maikov A. R., Sveshnikov A. G., “On rigorous and approximate nonstationary partial radiation conditions”, J. Communs Technol. and Electronics, 45, Suppl. 2 (2000), S196–S211

[15] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR

[16] Ladyzhenskaya O. A., Smeshannaya zadacha dlya giperbolicheskogo uravneniya, Gostekhteorizdat, M., 1953

[17] Vatson G. N., Teoriya besselevykh funktsii, Ch. I, Izd-vo inostr. lit., M., 1949

[18] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1984 | MR | Zbl

[19] Titchmarsh E. Ch., Razlozheniya po sobstvennym funktsiyam, svyazannye s differentsialnymi uravneniyami vtorogo poryadka, v. 1, Izd-vo inostr. lit., M., 1960 | MR

[20] Maikov A. R., Sveshnikov A. G., Yakunin S. A., “Raznostnaya skhema dlya nestatsionarnykh uravnenii Maksvella v volnovodnykh sistemakh”, Zh. vychisl. matem. i matem. fiz., 26:6 (1986), 851–863 | MR

[21] Vladimirov B. C., Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1976 | MR | Zbl

[22] Akhiezer N. I., Lektsii po teorii approksimatsii, Nauka, M., 1965 | MR

[23] Maikov A. R., “O priblizhennykh usloviyakh na otkrytoi granitse dlya volnovogo uravneniya i uravneniya Kleina–Gordona”, Vychisl. metody i programmirovanie, 6 (2005), 290–303 http://num-meth.srcc.msu.su