Numerical analysis of the Toda lattice equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 6, pp. 1032-1044
Cet article a éte moissonné depuis la source Math-Net.Ru
Numerical solutions to three systems of integrable evolutionary equations from the Toda lattice hierarchy are analyzed. These are the classical Toda lattice, the second local dispersive flow, and the second extended dispersive flow. Special attention is given to the properties of soliton solutions. For the equations of the second local flow, two types of solitons interacting in a special manner are found. Solutions corresponding to various initial data are qualitatively outlined.
@article{ZVMMF_2006_46_6_a6,
author = {S. P. Popov},
title = {Numerical analysis of the {Toda} lattice equations},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1032--1044},
year = {2006},
volume = {46},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_6_a6/}
}
S. P. Popov. Numerical analysis of the Toda lattice equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 6, pp. 1032-1044. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_6_a6/
[1] Karle G., “Rasshirennaya tsepochka Tody”, Teor. i matem. fiz., 137:1 (2003), 40–46 | MR
[2] Bibik Yu. V., Popov S. P., “Chislennoe modelirovanie solitonnykh reshenii prosteishikh diskretnykh nelineinykh uravnenii i ikh kontinualnykh analogov”, Matem. modelirovanie, 16:5 (2004), 66–82 | MR
[3] Dodd R., Eilbek Dzh., Gibbon Dzh., Morris X., Solitony i nelineinye volnovye uravneniya, Mir, M., 1988 | MR
[4] Zakharov V. E., “K probleme stokhastizatsii odnomernykh tsepochek nelineinykh ostsillyatorov”, Zh. eksperim. i teor. fiz., 65:1(7) (1973), 219–225