Numerical analysis of the Toda lattice equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 6, pp. 1032-1044 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Numerical solutions to three systems of integrable evolutionary equations from the Toda lattice hierarchy are analyzed. These are the classical Toda lattice, the second local dispersive flow, and the second extended dispersive flow. Special attention is given to the properties of soliton solutions. For the equations of the second local flow, two types of solitons interacting in a special manner are found. Solutions corresponding to various initial data are qualitatively outlined.
@article{ZVMMF_2006_46_6_a6,
     author = {S. P. Popov},
     title = {Numerical analysis of the {Toda} lattice equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1032--1044},
     year = {2006},
     volume = {46},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_6_a6/}
}
TY  - JOUR
AU  - S. P. Popov
TI  - Numerical analysis of the Toda lattice equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2006
SP  - 1032
EP  - 1044
VL  - 46
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_6_a6/
LA  - ru
ID  - ZVMMF_2006_46_6_a6
ER  - 
%0 Journal Article
%A S. P. Popov
%T Numerical analysis of the Toda lattice equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2006
%P 1032-1044
%V 46
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_6_a6/
%G ru
%F ZVMMF_2006_46_6_a6
S. P. Popov. Numerical analysis of the Toda lattice equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 6, pp. 1032-1044. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_6_a6/

[1] Karle G., “Rasshirennaya tsepochka Tody”, Teor. i matem. fiz., 137:1 (2003), 40–46 | MR

[2] Bibik Yu. V., Popov S. P., “Chislennoe modelirovanie solitonnykh reshenii prosteishikh diskretnykh nelineinykh uravnenii i ikh kontinualnykh analogov”, Matem. modelirovanie, 16:5 (2004), 66–82 | MR

[3] Dodd R., Eilbek Dzh., Gibbon Dzh., Morris X., Solitony i nelineinye volnovye uravneniya, Mir, M., 1988 | MR

[4] Zakharov V. E., “K probleme stokhastizatsii odnomernykh tsepochek nelineinykh ostsillyatorov”, Zh. eksperim. i teor. fiz., 65:1(7) (1973), 219–225