Calculation of effective moduli of composite materials
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 6, pp. 1128-1136 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Effective properties of composite and porous materials are determined by using an approach based on two-scale asymptotic expansions. Explicit approximate formulas are derived for the effective moduli of composite and porous materials of elongated structures. A numerical method is proposed for finding solutions to cell problems, which are used to determine “exact” effective moduli. Examples are computed for a two-dimensional porous medium with variously shaped pores and various degrees of “elongation”. The effective moduli produced by the explicit approximate formulas prove to be similar to those found by numerically solving cell problems.
@article{ZVMMF_2006_46_6_a12,
     author = {T. A. Yakubenko},
     title = {Calculation of effective moduli of composite materials},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1128--1136},
     year = {2006},
     volume = {46},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_6_a12/}
}
TY  - JOUR
AU  - T. A. Yakubenko
TI  - Calculation of effective moduli of composite materials
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2006
SP  - 1128
EP  - 1136
VL  - 46
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_6_a12/
LA  - ru
ID  - ZVMMF_2006_46_6_a12
ER  - 
%0 Journal Article
%A T. A. Yakubenko
%T Calculation of effective moduli of composite materials
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2006
%P 1128-1136
%V 46
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_6_a12/
%G ru
%F ZVMMF_2006_46_6_a12
T. A. Yakubenko. Calculation of effective moduli of composite materials. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 6, pp. 1128-1136. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_6_a12/

[1] Bakhvalov N. S., Panasenko T. P., Osrednenie protsessov v periodicheskikh sredakh. Matematicheskie zadachi mekhaniki kompozitnykh materialov, Nauka, M., 1984 | MR | Zbl

[2] Oleinik O. A., Iosifyan G. A., Shamaev A. C., Matematicheskie zadachi teorii silno neodnorodnykh uprugikh sred, Izd-vo MGU, M., 1990

[3] Sanches-Palensiya E., Neodnorodnye sredy i teoriya kolebanii, Mir, M., 1984 | MR

[4] Panasenko G. P., “Osrednenie polei v ramnykh i tonkostennykh konstruktsiyakh”, Uspekhi matem. nauk, 36:4 (1981), 224

[5] Bakhvalov N. S., Eglit M. E., “Homogenization of dynamic problems singularly depending on small parameters”, Proc. Sec. Workshop on Composite Media and Homogenization Theory (Trieste, 1993), World Scientific, Singapore, 1995, 17–35

[6] Bakhvalov N. S., Paulin J. S. J., “Homogenization for thermoconductivity in a porous medium with periods of different orders in the different directions”, Asymptotic Analys., 13 (1996), 253–276 | MR | Zbl

[7] Dudinskaya V. Yu., “Osrednenie statsionarnogo teplovogo polya v neodnorodnoi srede s tremya malymi parametrami”, Dokl. RAN, 334:3 (1994), 272–274

[8] Bakhvalov N. S., Eglit M. E., “Effektivnye moduli kompozitov, armirovannykh sistemoi plastin i sterzhnei”, Zh. vychisl. matem. i matem. fiz., 38:5 (1998), 813–834 | MR | Zbl

[9] Yakubenko T. A., “Averaging a periodic porous medium with periods of different orders in different directions”, Rus. J. Numer. Analys. Math. Modelling, 13:2 (1998), 149–157 | DOI | MR | Zbl

[10] Yakubenko T. A., “Effektivnye kharakteristiki trekhmernoi poristoi sredy spetsialnoi struktury”, Zh. vychisl. matem. i matem. fiz., 42:1 (2002), 89–100 | MR | Zbl

[11] Yakubenko T. A., “Effektivnye moduli periodicheskikh kompozitov vytyanutoi struktury”, Zh. vychisl. matem. i matem. fiz., 44:9 (2004), 1638–1653 | MR