A minimal residual method for linear polynomials in unitary matrices
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 6, pp. 975-982
Cet article a éte moissonné depuis la source Math-Net.Ru
A minimal residual method, called MINRES-N2, that is based on the use of unconventional Krylov subspaces was previously proposed by the authors for solving a system of linear equations $Ax=b$ with a normal coefficient matrix whose spectrum belongs to an algebraic second-degree curve $\Gamma$. However, the computational scheme of this method does not cover matrices of the form $A=\alpha U+\beta I$, where $U$ is an arbitrary unitary matrix; for such matrices, $\Gamma$ is a circle. Systems of this type are repeatedly solved when the eigenvectors of a unitary matrix are calculated by inverse iteration. In this paper, a modification of MINRES-N2 suitable for linear polynomials in unitary matrices is proposed. Numerical results are presented demonstrating the significant superiority of the modified method over GMRES as applied to systems of this class.
@article{ZVMMF_2006_46_6_a1,
author = {M. Dana and Kh. D. Ikramov},
title = {A~minimal residual method for linear polynomials in unitary matrices},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {975--982},
year = {2006},
volume = {46},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_6_a1/}
}
TY - JOUR AU - M. Dana AU - Kh. D. Ikramov TI - A minimal residual method for linear polynomials in unitary matrices JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2006 SP - 975 EP - 982 VL - 46 IS - 6 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_6_a1/ LA - ru ID - ZVMMF_2006_46_6_a1 ER -
M. Dana; Kh. D. Ikramov. A minimal residual method for linear polynomials in unitary matrices. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 6, pp. 975-982. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_6_a1/
[1] Dana M., Zykov A. G., Ikramov Kh. D., “Metod minimalnykh nevyazok dlya spetsialnogo klassa lineinykh sistem s normalnymi matritsami koeffitsientov”, Zh. vychisl. matem. i matem. fiz., 45:11 (2005), 1928–1937 | MR | Zbl
[2] Elsner L., Ikramov Kh. D., “On a condensed form for normal matrices under finite sequences of elementary unitary similarities”, Linear Algebra and Appl., 254 (1997), 79–98 | DOI | MR | Zbl
[3] Greenbaum A., Iterative methods for solving linear systems, SIAM, Philadelphia, 1997 | MR