On the SOR method with overlapping subsystems
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 6, pp. 963-974
Voir la notice de l'article provenant de la source Math-Net.Ru
A description is given of the iterative Jacobi method with overlapping subsystems and the corresponding Gauss–Seidel method. Similarly to the classical case, a generalized SOR method with overlapping subsystems is constructed by introducing an relaxation parameter. The concept of a $\omega$-consistent matrix is defined. It is shown that, with the optimal choice of the parameter, the theory developed by Young remains valid for $\omega$-consistent matrices. This implies certain results for $\omega$-consistent $H$-matrices. The theoretical conclusions obtained in the paper are supported by numerical results.
@article{ZVMMF_2006_46_6_a0,
author = {A. A. Maleev},
title = {On the {SOR} method with overlapping subsystems},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {963--974},
publisher = {mathdoc},
volume = {46},
number = {6},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_6_a0/}
}
A. A. Maleev. On the SOR method with overlapping subsystems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 6, pp. 963-974. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_6_a0/