On the SOR method with overlapping subsystems
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 6, pp. 963-974

Voir la notice de l'article provenant de la source Math-Net.Ru

A description is given of the iterative Jacobi method with overlapping subsystems and the corresponding Gauss–Seidel method. Similarly to the classical case, a generalized SOR method with overlapping subsystems is constructed by introducing an relaxation parameter. The concept of a $\omega$-consistent matrix is defined. It is shown that, with the optimal choice of the parameter, the theory developed by Young remains valid for $\omega$-consistent matrices. This implies certain results for $\omega$-consistent $H$-matrices. The theoretical conclusions obtained in the paper are supported by numerical results.
@article{ZVMMF_2006_46_6_a0,
     author = {A. A. Maleev},
     title = {On the {SOR} method with overlapping subsystems},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {963--974},
     publisher = {mathdoc},
     volume = {46},
     number = {6},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_6_a0/}
}
TY  - JOUR
AU  - A. A. Maleev
TI  - On the SOR method with overlapping subsystems
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2006
SP  - 963
EP  - 974
VL  - 46
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_6_a0/
LA  - ru
ID  - ZVMMF_2006_46_6_a0
ER  - 
%0 Journal Article
%A A. A. Maleev
%T On the SOR method with overlapping subsystems
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2006
%P 963-974
%V 46
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_6_a0/
%G ru
%F ZVMMF_2006_46_6_a0
A. A. Maleev. On the SOR method with overlapping subsystems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 6, pp. 963-974. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_6_a0/