Development of the Raleigh–Tailor instability in inhomogeneous magnetic gas-dynamic flows
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 5, pp. 902-912 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Results of the numerical simulation of the development of the hydrodynamic Raleigh–Tailor instability, which occurs when a high-current discharge is moving in a rail accelerator and in MHD flows with a current layer, are presented. It is established that the development of the instability under the conditions of the flow of cold gas around the discharge region leads to the formation of an irregular vortex structure of the magnetic gas-dynamic flow in the channel.
@article{ZVMMF_2006_46_5_a9,
     author = {E. N. Vasil'ev and D. A. Nesterov},
     title = {Development of the {Raleigh{\textendash}Tailor} instability in inhomogeneous magnetic gas-dynamic flows},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {902--912},
     year = {2006},
     volume = {46},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_5_a9/}
}
TY  - JOUR
AU  - E. N. Vasil'ev
AU  - D. A. Nesterov
TI  - Development of the Raleigh–Tailor instability in inhomogeneous magnetic gas-dynamic flows
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2006
SP  - 902
EP  - 912
VL  - 46
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_5_a9/
LA  - ru
ID  - ZVMMF_2006_46_5_a9
ER  - 
%0 Journal Article
%A E. N. Vasil'ev
%A D. A. Nesterov
%T Development of the Raleigh–Tailor instability in inhomogeneous magnetic gas-dynamic flows
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2006
%P 902-912
%V 46
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_5_a9/
%G ru
%F ZVMMF_2006_46_5_a9
E. N. Vasil'ev; D. A. Nesterov. Development of the Raleigh–Tailor instability in inhomogeneous magnetic gas-dynamic flows. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 5, pp. 902-912. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_5_a9/

[1] Asinovskii E. I., Zeigarnik B. A., Lebedev E. F i dr., Impulsnye MGD-preobrazovateli khimicheskoi energii v elektricheskuyu, Energoatomizdat, M., 1997

[2] Gasilov V. A., Slavin B. C., Tkachenko S. I., “Chislennoe modelirovanie gidromagnitnoi neustoichivosti tokovogo sloya”, Teplofiz. vysokikh t-r, 28:2 (1990), 220–226

[3] Belotserkovskii O. M., “Polnoe chislennoe modelirovanie svobodnoi razvitoi turbulentnosti”, Zh. vychisl. matem. i matem. fiz., 25:12 (1985), 1856–1882 | MR

[4] Belotserkovskii O. M., Oparin A. M., Chechetkin V. M., Turbulentnost: novye podkhody, Nauka, M., 2003

[5] Babakov A. B., “O vozmozhnosti chislennogo modelirovaniya nestatsionarnykh vikhrevykh struktur v blizhnem slede”, Zh. vychisl. matem. i matem. fiz., 28:2 (1988), 267–276

[6] Belotserkovskii O. M., Oparin A. M., “Chislennoe issledovanie osobennostei prostranstvennogo razvitiya neustoichivosti Releya–Teilora”, Zh. vychisl. matem. i matem. fiz., 40:7 (2000), 1098–1103 | MR

[7] Chetverushkin B. N., Matematicheskoe modelirovanie zadach dinamiki izluchayuschego gaza, Nauka, M., 1985 | Zbl

[8] Adrianov V. N., “Setochnyi metod issledovaniya radiatsionnogo i slozhnogo teploobmena”, Izv. AN SSSR, 1988, no. 2, 142–150

[9] Anderson D., Tannekhil Dzh., Pletcher R., Vychislitelnaya gidrodinamika i teploobmen, Mir, M., 1990 | Zbl

[10] Book D. L., Boris J. P., Hain K., “Flux-corrected transport II. Generalization of the method”, J. Comput. Phys., 18 (1975), 248–283 | DOI | Zbl

[11] Vasilev E. H., Nesterov D. A., Chislennoe modelirovanie radiatsionno-konvektivnogo teploobmena dlya MGD-techeniya s $T$-sloem, IVM SO RAN, Krasnoyarsk, 2004

[12] Zhukov M. F., Koroteev A. C., Uryukov B. A., Prikladnaya dinamika termicheskoi plazmy, Nauka, Novosibirsk, 1975

[13] Van Dyke M., Album of fluid motion, Parabolic Press, Stanford, California (USA), 1982

[14] Kukhtetskii S. V., Lyubochko B. A. i dr., “Integralnaya model razryada v relsovom uskoritele s uchetom obtekaniya”, Zh. prikl. mekhan. i tekhn. fiz., 1986, no. 1, 40–46

[15] Avilova I. V., Biberman L. M. i dr., Opticheskie svoistva goryachego vozdukha, Nauka, M., 1970

[16] Sokolova I. A., “Koeffitsienty perenosa i integraly stolknoveniya vozdukha i ego komponent”, Fiz. kinetika. Sb. nauchn. tr. ITPM SO AN SSSR, 4, Novosibirsk, 1974, 39–104

[17] Vasilev E. H., “Formirovanie tokovogo sloya v usloviyakh radiatsionnogo teploobmena pri vysokom davlenii”, Izv. SO AN SSSR. Ser. tekhn. nauk, 1990, no. 1, 94–97

[18] Sebald N., “Measurement of the temperature and flow fields of the magnetically stabilized cross-flow $N_2$ arcs”, Appl. Phys., 21 (1980), 221–236 | DOI

[19] Vasilev E. H., Ovchinnikov V. V., Slavin B. C., “Diagramma sostoyanii stabilizirovannogo tokovogo sloya v kanale MGD-generatora”, Dokl. AN SSSR, 290:6 (1986), 1305–1309

[20] Vasilev E. H., Slavin B. C., Tkachenko P. P., “Effekt “skolzheniya” razryada, stabilizirovannogo stenkami magnitogazodinamicheskogo kanala”, Zh. prikl. mekhan. i tekhn. fiz., 1988, no. 4, 10–16