Mathematical simulation of laser induced melting and evaporation of multilayer materials
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 5, pp. 887-901 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using the laser induced remelting of a three-layer target Al+Ni+Cr as an example, the use of the dynamic adaptation for solving the multifront Stefan problem with explicit tracking of the melting and evaporation fronts is considered. The dynamic adaptation is used to construct quasi-uniform grids in regions with moving boundaries. The characteristic size of those regions may vary by several orders of magnitude in the process of computations. The algorithm used to construct the grids takes into account the varying size of the region and the velocity of the boundary motion, which makes it possible to automatically distribute the grid points without using fitting parameters. The mathematical simulation of the doping process using the melt with respect to the thick substrate and thin doping layers showed the importance of the sequencing of coatings. The computations showed that if the upper exposed layer is chromium, then it can completely evaporate or sublimate by the end of the pulse due to its heat-transfer properties. This can be easily changed if the doping layers are arranged according to the scheme Al+Cr+Ni. Then, the upper exposed layer is nickel, which is not so easily evaporated.
@article{ZVMMF_2006_46_5_a8,
     author = {O. N. Korol\"eva and V. I. Mazhukin},
     title = {Mathematical simulation of laser induced melting and evaporation of multilayer materials},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {887--901},
     year = {2006},
     volume = {46},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_5_a8/}
}
TY  - JOUR
AU  - O. N. Korolëva
AU  - V. I. Mazhukin
TI  - Mathematical simulation of laser induced melting and evaporation of multilayer materials
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2006
SP  - 887
EP  - 901
VL  - 46
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_5_a8/
LA  - ru
ID  - ZVMMF_2006_46_5_a8
ER  - 
%0 Journal Article
%A O. N. Korolëva
%A V. I. Mazhukin
%T Mathematical simulation of laser induced melting and evaporation of multilayer materials
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2006
%P 887-901
%V 46
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_5_a8/
%G ru
%F ZVMMF_2006_46_5_a8
O. N. Korolëva; V. I. Mazhukin. Mathematical simulation of laser induced melting and evaporation of multilayer materials. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 5, pp. 887-901. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_5_a8/

[1] Rykalin H. H., Uglov A. A., Zuev I. V., Kokora A. N., Lazernaya i elektronno-luchevaya obrabotka metallov, Mashinostr., M., 1985

[2] Volgin V. I., “Vliyanie lazernogo legirovaniya poverkhnosti na tverdost alyuminievogo splava AL25”, Poverkhnost. Fiz., khim., mekhan., 1983, no. 1, 125–129

[3] Safonov A. N., Grigoryants A. G., Makusheva H. A., Sergeev A. B., “Issledovanie mikrostruktury alyuminievykh i mednykh splavov posle obrabotki nepreryvnym $\mathrm{CO}_2$-lazerom”, Elektronnaya obrabotka materialov, 1984, no. 1, 26–29

[4] Deriglazova I. F., Levites I. I., Mulchenko B. F., “Lazernoe legirovanie alyuminievykh porshnevykh splavov. Issledovanie struktury”, Avtomobilnaya prom-st. Lazernaya obrabotka, 1985, no. 12, 8–10

[5] Deriglazova I. F., Bogolyubova I. V., Mulchenko B. F., “Issledovanie vozmozhnosti legirovaniya alyuminievykh porshnei s pomoschyu lazernogo izlucheniya”, Tr. NPO “NIITavtoprom”, 2, M., 1987, 33–34

[6] Deriglazova I. F., Mulchenko B. F., Vorobev S. S. i dr., “Lazernoe uprochnenie kanavok alyuminievykh porshnei”, Avtomobilnaya prom-st. Tekhnologiya, materialy, 1987, no. 9, 25–26

[7] Bogolyubova I. V., Deriglazova I. F., Mulchenko B. F., “Lazernoe poverkhnostnoe legirovanie splava AL25”, Metallovedenie i termich. obrabotka metallov, 1988, no. 5, 24–25

[8] Mazhukin V. I., Samarskii A. A., “Mathematical modeling in the technology of laser treatments of materials. Review”, Surv. Math. Ind., 4 (1994), 85–149 | MR | Zbl

[9] Darin H. A., Mazhukin V. I., “Matematicheskoe modelirovanie zadachi Stefana na adaptivnoi setke”, Differents. ur-niya, 23:7 (1987), 1154–1160 | MR

[10] Breslavskii P. V., Mazhukin V. I., “Matematicheskoe modelirovanie protsessov impulsnogo plavleniya i ispareniya metalla s yavnym vydeleniem fazovykh granits”, Inzh.-fiz. zhurnal, 57:1 (1989), 107–114

[11] Mazhukin V. I., Smurov I., Dupuy C., Jeandel D., “Simulation of laser induced melting and evaporation processes in superconducting ceramics”, J. Numer. Heat Transfer. Part A, 26 (1994), 587–600 | DOI

[12] Cheynet B., Dubois J.-D., Milesi M., “Données thermodynamiques des éléments chimiques”, Techn. l'Ingenier, traité Materiaux metalliques, Imprimerie, Strasburg, 1993, M 64-1–M 64-22

[13] Laurent M., Vuillermoz P. L., “Conductivité Thermique des solides”, Techn. de l'Ingenier, traité Constantes physico-chimiques, Imprimerie, Strasburg, 1995, K 420-1–K 420-30

[14] von H. Borchers, E. Schmidt (ed.), Numerical data and functional relatioships in science and technology, v. 6, Springer, Berlin etc., 1964

[15] Smilz K. Dzh., Metally. Spravochnik, Izd. 5-e, Metallurgiya, M., 1980

[16] I. S. Grigorev, E. Z. Meilikhov (red.), Fizicheskie velichiny. Spravochnik, Energoatomizdat, M., 1991

[17] Zahlen werte und Funktionen aus Physik-Chemie-Astronomie-Geophysik und Technik. II. Band. Eigenschaften der Materie in ihren Aggregatustanden, 4. Teil Kalorische zustandsgrossen, eds. Hsg von J. Bartels, H. Borchers, P. Ten, Springer, Berlin etc., 1961

[18] Tikhonov A. H., Samarskii A. A., Uravneniya matematicheskoi fiziki, Izd-vo MGU, M., 1999 | MR

[19] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1977 | MR | Zbl

[20] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978 | MR