On the convergence rate and optimization of a numerical method with splitting of boundary conditions for the stokes system in a spherical layer in the axisymmetric case: Modification for thick layers
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 5, pp. 858-886 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The convergence rate of a fast-converging second-order accurate iterative method with splitting of boundary conditions constructed by the authors for solving an axisymmetric Dirichlet boundary value problem for the Stokes system in a spherical gap is studied numerically. For $R/r$ exceeding about 30, where $r$ and $R$ are the radii of the inner and outer boundary spheres, it is established that the convergence rate of the method is lower (and considerably lower for large $R/r$) than the convergence rate of its differential version. For this reason, a really simpler, more slowly converging modification of the original method is constructed on the differential level and a finite-element implementation of this modification is built. Numerical experiments have revealed that this modification has the same convergence rate as its differential counterpart for $R/r$ of up to $5\times10^3$. When the multigrid method is used to solve the split and auxiliary boundary value problems arising at iterations, the modification is more efficient than the original method starting from $R/r\sim30$ and is considerably more efficient for large values of $R/r$. It is also established that the convergence rates of both methods depend little on the stretching coefficient $\eta$ of circularly rectangular mesh cells in a range of $\eta$ that is well sufficient for effective use of the multigrid method for arbitrary values of $R/r$ smaller than $\sim 5\times10^3$.
@article{ZVMMF_2006_46_5_a7,
     author = {B. V. Pal'tsev and I. I. Chechel'},
     title = {On the convergence rate and optimization of a~numerical method with splitting of boundary conditions for the stokes system in a~spherical layer in the axisymmetric case: {Modification} for thick layers},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {858--886},
     year = {2006},
     volume = {46},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_5_a7/}
}
TY  - JOUR
AU  - B. V. Pal'tsev
AU  - I. I. Chechel'
TI  - On the convergence rate and optimization of a numerical method with splitting of boundary conditions for the stokes system in a spherical layer in the axisymmetric case: Modification for thick layers
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2006
SP  - 858
EP  - 886
VL  - 46
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_5_a7/
LA  - ru
ID  - ZVMMF_2006_46_5_a7
ER  - 
%0 Journal Article
%A B. V. Pal'tsev
%A I. I. Chechel'
%T On the convergence rate and optimization of a numerical method with splitting of boundary conditions for the stokes system in a spherical layer in the axisymmetric case: Modification for thick layers
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2006
%P 858-886
%V 46
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_5_a7/
%G ru
%F ZVMMF_2006_46_5_a7
B. V. Pal'tsev; I. I. Chechel'. On the convergence rate and optimization of a numerical method with splitting of boundary conditions for the stokes system in a spherical layer in the axisymmetric case: Modification for thick layers. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 5, pp. 858-886. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_5_a7/

[1] Paltsev B. V., Chechel I. I., “O metode 2-go poryadka tochnosti s rasschepleniem granichnykh uslovii resheniya statsionarnoi osesimmetrichnoi zadachi Nave-Stoksa v sharovykh sloyakh”, Zh. vychisl. matem. i matem. fiz., 45:12 (2005), 2232–2250 | MR

[2] Paltsev B. V., Chechel I. I., “O konechno-elementnykh tipa lineinykh, vtorogo poryadka tochnosti vplot do polyusov, approksimatsiyakh operatorov Laplasa–Beltrami, gradienta i divergentsii na sfere v $\mathbb R^3$ v osesimmetrichnom sluchae”, Dokl. RAN, 395:3 (2004), 308–315 | MR

[3] Paltsev B. V., Chechel I. I., “Konechno-elementnye realizatsii iteratsionnykh metodov s rasschepleniem granichnykh uslovii dlya sistem Stoksa i tipa Stoksa v sharovom sloe, obespechivayuschie 2-i poryadok tochnosti vplot do osi simmetrii”, Zh. vychisl. matem. i matem. fiz., 45:5 (2005), 846–889 | MR

[4] Paltsev B. V., “Ob usloviyakh skhodimosti iteratsionnykh metodov s polnym rasschepleniem granichnykh uslovii dlya sistemy Stoksa v share i sharovom sloe”, Zh. vychisl. matem. i matem. fiz., 35:6 (1995), 935–963 | MR

[5] Paltsev B. V., “Optimizatsiya znachenii relaksatsionnykh parametrov odnoshagovogo varianta iteratsionnogo metoda s rasschepleniem granichnykh uslovii dlya sistemy Stoksa v sharovom sloe”, Vestn. RUDN, 8:2 (2001), 74–90

[6] Fedorenko R. P., “Iteratsionnye metody resheniya raznostnykh ellipticheskikh uravnenii”, Uspekhi matem. nauk, 28:2 (1973), 121–182 | MR | Zbl

[7] Me Cormick S. F., Ruge J. W., “Multigrid methods for variational problems”, SIAM J. Numer. Analys., 19:5 (1982), 924–929 | DOI | MR

[8] Paltsev B. V., “Ob usloviyakh skhodimosti iteratsionnykh metodov s polnym rasschepleniem granichnykh uslovii dlya sistemy Stoksa v kruge i koltse”, Zh. vychisl. matem. i matem. fiz., 34:7 (1994), 1015–1037 | MR

[9] Meller H. A., Paltsev B. V., Khlyupina E. G., “O konechno-elementnykh realizatsiyakh iteratsionnykh metodov s rasschepleniem granichnykh uslovii dlya sistem Stoksa i tipa Stoksa v sharovom sloe. Osesimmetrichnyi sluchai”, Zh. vychisl. matem. i matem. fiz., 39:1 (1999), 98–123 | MR | Zbl

[10] Meller H. A., Paltsev B. V., Khlyupina E. G., O bilineinoi konechno-elementnoi realizatsii metoda s rasschepleniem granichnykh uslovii dlya sistemy Stoksa v sharovom sloe v osesimmetrichnom sluchae, Yubileinyi (elektronnyi) sbornik trudov chlenov i sotrudnikov OIVTA RAN, posvyaschennyi 275-letiyu RAN, Razd. I, M., 1999

[11] Paltsev B. V., “O bystroskhodyaschikhsya iteratsionnykh metodakh s rasschepleniem granichnykh uslovii dlya mnogomernoi sistemy tipa Stoksa. Periodicheskie “techeniya” mezhdu parallelnymi stenkami”, Dokl. RAN, 325:5 (1990), 926–931 | MR

[12] Paltsev B. V., “O bystroskhodyaschikhsya iteratsionnykh metodakh s polnym rasschepleniem granichnykh uslovii dlya mnogomernoi singulyarno vozmuschennoi sistemy tipa Stoksa”, Matem. sb., 185:9 (1994), 109–138 | MR

[13] Lozinskii A. C., “Ob uskorenii konechno-elementnykh realizatsii iteratsionnykh protsessov s rasschepleniem granichnykh uslovii dlya sistemy tipa Stoksa”, Zh. vychisl. matem. i matem. fiz., 40:9 (2000), 1339–1363 | MR

[14] Agoshkov A. C., Lebedev V. I., “Operatory Puankare–Steklova i metody razdeleniya oblasti v variatsionnykh zadachakh”, Vychisl. protsessy i sistemy, 2, Nauka, M., 1985, 173–226 | MR

[15] Paltsev B. V., Chechel I. I., “O nekotorykh sposobakh povysheniya skorosti skhodimosti na vysokikh garmonikakh bilineinykh konechno-elementnykh realizatsii iteratsionnykh metodov s rasschepleniem granichnykh uslovii dlya sistemy tipa Stoksa”, Zh. vychisl. matem. i matem. fiz., 38:6 (1998), 956–970 | MR

[16] Paltsev B. V., Chechel I. I., “O realnykh kachestvakh bilineinykh konechno-elementnykh realizatsii metodov s rasschepleniem granichnykh uslovii dlya sistemy tipa Stoksa”, Zh. vychisl. matem. i matem. fiz., 38:2 (1998), 247–261 | MR