Numerical solution of the linear inverse problem for the Euler–Darboux equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 5, pp. 848-857 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An inverse problem of the reconstruction of the right-hand side of the Euler–Darboux equation is studied. This problem is equivalent to the Volterra integral equation of the third kind with the operator of multiplication by a smooth nonincreasing function. Numerical solution of this problem is constructed using an integral representation of the solution of the inverse problem, the regularization method, and the method of quadratures. The convergence and stability of the numerical method is proved.
@article{ZVMMF_2006_46_5_a6,
     author = {A. V. Glushak and T. T. Karakeev},
     title = {Numerical solution of the linear inverse problem for the {Euler{\textendash}Darboux} equation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {848--857},
     year = {2006},
     volume = {46},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_5_a6/}
}
TY  - JOUR
AU  - A. V. Glushak
AU  - T. T. Karakeev
TI  - Numerical solution of the linear inverse problem for the Euler–Darboux equation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2006
SP  - 848
EP  - 857
VL  - 46
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_5_a6/
LA  - ru
ID  - ZVMMF_2006_46_5_a6
ER  - 
%0 Journal Article
%A A. V. Glushak
%A T. T. Karakeev
%T Numerical solution of the linear inverse problem for the Euler–Darboux equation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2006
%P 848-857
%V 46
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_5_a6/
%G ru
%F ZVMMF_2006_46_5_a6
A. V. Glushak; T. T. Karakeev. Numerical solution of the linear inverse problem for the Euler–Darboux equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 5, pp. 848-857. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_5_a6/

[1] Nakhushev A. M., “Obratnye zadachi dlya vyrozhdayuschikhsya uravnenii i integralnye uravneniya Volterra tretego roda”, Differents. ur-niya, 10:1 (1974), 100–111 | Zbl

[2] Glushak A. B., Karakeev T. T., “Regulyarizatsiya obratnoi zadachi vosstanovleniya pravoi chasti sistemy uravnenii Eilera–Darbu”, Vestn. VGU. Ser. fiz., matem. Voronezh, 2005, no. 2, 124–127

[3] Karakeev T. T., “Regulyarizatsiya obratnoi zadachi dlya sistemy Eilera–Darbu”, Ur-niya smeshannogo tipa i rodstvennye probl. analiza i informatiki. Materialy Ros.-Kazakhskogo simpoziuma, Elbrus, Nalchik, 2004, 119–122

[4] Karakeev T. T., “Reshenie integralnykh uravnenii Volterra tretego roda metodom regulyarizovannykh kvadratur”, Vestn. KGPU. Ser. 1. Bishkek, 2004, no. 2, 10–17

[5] Apartsin A. C., Neklassicheskie uravneniya Volterra I roda: teoriya i chislennye metody, Nauka, Sibirskaya izdat. firma RAN, Novosibirsk, 1999

[6] Tikhonov A. N., Goncharskii A. B., Stepanov V. V., Yagola A. G., Chislennye metody resheniya nekorrektnykh zadach, Nauka, M., 1990 | MR