@article{ZVMMF_2006_46_5_a6,
author = {A. V. Glushak and T. T. Karakeev},
title = {Numerical solution of the linear inverse problem for the {Euler{\textendash}Darboux} equation},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {848--857},
year = {2006},
volume = {46},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_5_a6/}
}
TY - JOUR AU - A. V. Glushak AU - T. T. Karakeev TI - Numerical solution of the linear inverse problem for the Euler–Darboux equation JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2006 SP - 848 EP - 857 VL - 46 IS - 5 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_5_a6/ LA - ru ID - ZVMMF_2006_46_5_a6 ER -
%0 Journal Article %A A. V. Glushak %A T. T. Karakeev %T Numerical solution of the linear inverse problem for the Euler–Darboux equation %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2006 %P 848-857 %V 46 %N 5 %U http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_5_a6/ %G ru %F ZVMMF_2006_46_5_a6
A. V. Glushak; T. T. Karakeev. Numerical solution of the linear inverse problem for the Euler–Darboux equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 5, pp. 848-857. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_5_a6/
[1] Nakhushev A. M., “Obratnye zadachi dlya vyrozhdayuschikhsya uravnenii i integralnye uravneniya Volterra tretego roda”, Differents. ur-niya, 10:1 (1974), 100–111 | Zbl
[2] Glushak A. B., Karakeev T. T., “Regulyarizatsiya obratnoi zadachi vosstanovleniya pravoi chasti sistemy uravnenii Eilera–Darbu”, Vestn. VGU. Ser. fiz., matem. Voronezh, 2005, no. 2, 124–127
[3] Karakeev T. T., “Regulyarizatsiya obratnoi zadachi dlya sistemy Eilera–Darbu”, Ur-niya smeshannogo tipa i rodstvennye probl. analiza i informatiki. Materialy Ros.-Kazakhskogo simpoziuma, Elbrus, Nalchik, 2004, 119–122
[4] Karakeev T. T., “Reshenie integralnykh uravnenii Volterra tretego roda metodom regulyarizovannykh kvadratur”, Vestn. KGPU. Ser. 1. Bishkek, 2004, no. 2, 10–17
[5] Apartsin A. C., Neklassicheskie uravneniya Volterra I roda: teoriya i chislennye metody, Nauka, Sibirskaya izdat. firma RAN, Novosibirsk, 1999
[6] Tikhonov A. N., Goncharskii A. B., Stepanov V. V., Yagola A. G., Chislennye metody resheniya nekorrektnykh zadach, Nauka, M., 1990 | MR