A method for finding coefficients of a quasilinear hyperbolic equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 5, pp. 813-833
Voir la notice de l'article provenant de la source Math-Net.Ru
The inverse problem of finding the coefficients $q(s)$ and $p(s)$ in the equation $u_{tt}=a^2u_{xx}+q(u)u_t-p(u)u_x$ is investigated. As overdetermination required in the inverse setting, two additional conditions are set: a boundary condition and a condition with a fixed value of the timelike variable. An iteration method for solving the inverse problem is proposed based on an equivalent system of integral equations of the second kind. A uniqueness theorem and an existence theorem in a small domain are proved for the inverse problem to substantiate the convergence of the algorithm.
@article{ZVMMF_2006_46_5_a4,
author = {A. Yu. Shcheglov},
title = {A~method for finding coefficients of a~quasilinear hyperbolic equation},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {813--833},
publisher = {mathdoc},
volume = {46},
number = {5},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_5_a4/}
}
TY - JOUR AU - A. Yu. Shcheglov TI - A method for finding coefficients of a quasilinear hyperbolic equation JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2006 SP - 813 EP - 833 VL - 46 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_5_a4/ LA - ru ID - ZVMMF_2006_46_5_a4 ER -
A. Yu. Shcheglov. A method for finding coefficients of a quasilinear hyperbolic equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 5, pp. 813-833. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_5_a4/