@article{ZVMMF_2006_46_5_a4,
author = {A. Yu. Shcheglov},
title = {A~method for finding coefficients of a~quasilinear hyperbolic equation},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {813--833},
year = {2006},
volume = {46},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_5_a4/}
}
TY - JOUR AU - A. Yu. Shcheglov TI - A method for finding coefficients of a quasilinear hyperbolic equation JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2006 SP - 813 EP - 833 VL - 46 IS - 5 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_5_a4/ LA - ru ID - ZVMMF_2006_46_5_a4 ER -
A. Yu. Shcheglov. A method for finding coefficients of a quasilinear hyperbolic equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 5, pp. 813-833. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_5_a4/
[1] Denisov A. M., Vvedenie v teoriyu obratnykh zadach, Izd-vo MGU, M., 1994
[2] Prilepko A. I., Orlovsky D. G., Vasin I. A., Methods for solving inverse problems in mathematical physics, Marcel Dekker, Inc., N.Y, Basel, 1999 | MR
[3] Ishmukhametov A. Z., Voprosy ustoichivosti i approksimatsii zadach optimalnogo upravleniya, VTs RAN, M., 2000
[4] Iskenderov A. D., “Ob odnoi obratnoi zadache dlya kvazilineinykh parabolicheskikh uravnenii”, Differents. ur-niya, 10:5 (1974), 890–898 | MR | Zbl
[5] Muzylev N. V., “O edinstvennosti odnovremennogo opredeleniya koeffitsientov teploprovodnosti i ob'emnoi teploemkosti”, Zh. vychisl. matem. i matem. fiz., 23:1 (1983), 102–108 | MR
[6] Scheglov A. Yu., “Obratnaya zadacha dlya kvazilineinogo uravneniya teploprovodnosti”, Vestn. MGU. Ser. 15. Vychisl. matem. i kibernetika, 1987, no. 2, 8–11
[7] Drozhzhina O. V., “Metod chislennogo vosstanovleniya dvukh koeffitsientov v nelineinom neodnorodnom uravnenii teploprovodnosti”, Vestn. MGU. Ser. 15. Vychisl. matem. i kibernetika, 2003, no. 2, 6–12 | MR
[8] Glushkova E. S., “Über Die Eindeutigkeit einiger inverser Probleme fur die Telegraphengleichung”, Matem. probl. geofiz., 6, Novosibirsk, 1975, 130–144 | Zbl
[9] Cavaterra C., “An inverse problem for a semilinear wave equation”, Boll. Univ. Mat. Ital. (B). Ser. 7, 2:3 (1988), 695–711 | MR | Zbl
[10] Guo Bao Qi, Wang Jian Tao, “An inverse problem for a one-dimensional semilinear hyperbolic equation with an unknown source”, J. Harbin Inst. Techn., 4 (1989), 14–20 | MR | Zbl
[11] Grasselli M., “Local existence and uniqueness for a quasilinear hyperbolic inverse problem”, J. Appl. Analys., 32:1 (1989), 15–30 | DOI | MR | Zbl
[12] Denisov A. M., “Determination of a nonlinear coefficient in a hyperbolic equation for the Goursat problem”, J. Inverse. Ill-Posed Problems, 6:4 (1998), 327–334 | DOI | MR | Zbl
[13] Scheglov A. Yu., “Metod priblizhennogo resheniya obratnoi zadachi dlya polulineinogo uravneniya giperbolicheskogo tipa”, Zh. vychisl. matem. i matem. fiz., 43:1 (2003), 111–126 | MR
[14] Scheglov A. Yu., “Metod priblizhennogo resheniya v $C^2$ uravneniya giperbolicheskogo tipa s lipshitsevoi nelineinostyu”, Zh. vychisl. matem. i matem. fiz., 41:3 (2001), 420–435