An extraproximal method for solving equilibrium programming problems in a Hilbert space
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 5, pp. 781-798 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A regularized method of the proximal type for solving equilibrium problems in a Hilbert space is proposed. The method is combined with an approximation of the original problem. The convergence of the method is analyzed, and a regularizing operator is constructed.
@article{ZVMMF_2006_46_5_a1,
     author = {A. S. Stukalov},
     title = {An extraproximal method for solving equilibrium programming problems in {a~Hilbert} space},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {781--798},
     year = {2006},
     volume = {46},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_5_a1/}
}
TY  - JOUR
AU  - A. S. Stukalov
TI  - An extraproximal method for solving equilibrium programming problems in a Hilbert space
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2006
SP  - 781
EP  - 798
VL  - 46
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_5_a1/
LA  - ru
ID  - ZVMMF_2006_46_5_a1
ER  - 
%0 Journal Article
%A A. S. Stukalov
%T An extraproximal method for solving equilibrium programming problems in a Hilbert space
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2006
%P 781-798
%V 46
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_5_a1/
%G ru
%F ZVMMF_2006_46_5_a1
A. S. Stukalov. An extraproximal method for solving equilibrium programming problems in a Hilbert space. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 5, pp. 781-798. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_5_a1/

[1] Oben Zh.-P., Nelineinyi analiz i ego ekonomicheskie prilozheniya, Mir, M., 1988 | MR

[2] Aubin J.-P., Frankowska H., Set-valued analysis, Birkhaüser, Berlin, 1990 | MR | Zbl

[3] Antipin A. C., “O differentsialnykh gradientnykh metodakh prognoznogo tipa dlya vychisleniya nepodvizhnykh tochek ekstremalnykh otobrazhenii”, Differents. ur-niya, 31:11 (1995), 1786–1795 | MR | Zbl

[4] Antipin A. C., “Ravnovesnoe programmirovanie: proksimalnye metody”, Zh. vychisl. matem. i matem. fiz., 37:11 (1997), 1327–1339 | MR | Zbl

[5] Antipin A. C., “O skhodimosti i otsenkakh skorosti skhodimosti proksimalnykh metodov k nepodvizhnym tochkam ekstremalnykh otobrazhenii”, Zh. vychisl. matem. i matem. fiz., 35:5 (1995), 688–704 | MR | Zbl

[6] Antipin A. C., “Metod vnutrennei linearizatsii dlya zadach ravnovesnogo programmirovaniya”, Zh. vychisl. matem. i matem. fiz., 40:8 (2000), 1142–1162 | MR

[7] Antipin A. C., Gradientnyi i ekstragradientnyi podkhody v bilineinom ravnovesnom programmirovanii, VTs RAN, M., 2002

[8] Antipin A. C., “Rasscheplenie gradientnogo podkhoda dlya resheniya ekstremalnykh vklyuchenii”, Zh. vychisl. matem. i matem. fiz., 38:7 (1998), 1118–1132 | MR | Zbl

[9] Antipin A. C., “Ekstraproksimalnyi metod resheniya ravnovesnykh i igrovykh zadach”, Zh. vychisl. matem. i matem. fiz., 45:11 (2005), 1969–1990 | MR | Zbl

[10] Stukalov A. C., “Regulyarizovannyi ekstragradientnyi metod resheniya zadach ravnovesnogo programmirovaniya v gilbertovom prostranstve”, Zh. vychisl. matem. i matem. fiz., 45:9 (2005), 1538–1554 | MR | Zbl

[11] Vasilev F. P., Metody optimizatsii, Faktorial Press, M., 2002

[12] Baiokki K., Kapelo A., Variatsionnye i kvazivariatsionnye neravenstva. Prilozhenie k zadacham so svobodnoi granitsei, Nauka, M., 1988 | MR

[13] Tikhonov A. P., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1986 | MR | Zbl

[14] Vasilev F. P., Stukalov A. C., “Approksimatsiya ravnovesnoi zadachi po argumentu”, Zh. vychisl. matem. i matem. fiz., 44:11 (2004), 1972–1982 | MR