On quadratures related to Padé approximants for the inversion of the Laplace transform
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 5, pp. 771-780 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Properties of the quadratures for the numerical inversion of the Laplace transform generated by Padé approximants of the exponential function are examined. In particular, quadratures of the highest possible degree of accuracy are considered.
@article{ZVMMF_2006_46_5_a0,
     author = {V. M. Ryabov},
     title = {On quadratures related to {Pad\'e} approximants for the inversion of the {Laplace} transform},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {771--780},
     year = {2006},
     volume = {46},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_5_a0/}
}
TY  - JOUR
AU  - V. M. Ryabov
TI  - On quadratures related to Padé approximants for the inversion of the Laplace transform
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2006
SP  - 771
EP  - 780
VL  - 46
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_5_a0/
LA  - ru
ID  - ZVMMF_2006_46_5_a0
ER  - 
%0 Journal Article
%A V. M. Ryabov
%T On quadratures related to Padé approximants for the inversion of the Laplace transform
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2006
%P 771-780
%V 46
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_5_a0/
%G ru
%F ZVMMF_2006_46_5_a0
V. M. Ryabov. On quadratures related to Padé approximants for the inversion of the Laplace transform. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 5, pp. 771-780. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_5_a0/

[1] Ryabov V. M., “Chislennye metody obrascheniya preobrazovaniya Laplasa”, Metody vychislenii, 13, Izd-vo Leningr. un-ta, L., 1983, 97–116 | MR

[2] Ryabov V. M., “Otsenka pogreshnosti kvadraturnykh formul obrascheniya preobrazovaniya Laplasa, svyazannykh s approksimatsiyami Pade funktsii $e^z$”, Vestn. Leningr. un-ta, 1984, no. 1, 42–47 | MR | Zbl

[3] Ryabov V. M., “O tochnosti nekotorykh metodov obrascheniya preobrazovaniya Laplasa”, Metody vychislenii, 14, Izd-vo Leningr. un-ta, L., 1985, 59–71 | MR

[4] Ryabov V. M., “O tochnosti vychisleniya znachenii i skachkov originala metodom Viddera”, Vestn. Leningr. un-ta, 1989, no. 15, 35–38 | MR

[5] Ryabov V. M., “Vychislenie skachkov originala po ego izobrazheniyu s pomoschyu kvadraturnykh formul”, Vestn. S.-Peterburgskogo un-ta, 1998, no. 1, 36–39 | MR | Zbl

[6] Ryabov V. M., “Nekotorye svoistva kvadraturnykh formul naivysshei stepeni tochnosti chislennogo obrascheniya preobrazovaniya Laplasa”, Vestn. S.-Peterburgskogo un-ta, 2000, no. 1, 68–73 | MR | Zbl

[7] Krylov V. I., Skoblya N. S., Metody priblizhennogo preobrazovaniya Fure i obrascheniya preobrazovaniya Laplasa, Nauka, M., 1974

[8] Beiker Dzh., Greivs-Morris P., Approksimatsii Pade, Mir, M., 1986 | MR

[9] Bruin M. G., Saff E. B., Varga R. S., “On the zeros of generalized Bessel polynomials”, Indagationes mathematicae, 43:1 (1981), 1–25 | MR

[10] Zakian V., “Properties of $I_{mn}$ and $J_{mn}$ approximants and applications to numerical inversion of Laplace transforms and initial value problems”, J. Math. Analys. and Appl., 50:1 (1975), 191–222 | DOI | MR | Zbl

[11] Lebedeva A. B., Ryabov V. M., “Asimptoticheskie svoistva kvadraturnykh formul dlya chislennogo obrascheniya preobrazovaniya Laplasa”, Vestn. S.-Peterburgskogo un-ta. Ser. 1, 1998, no. 2(8), 44–49 | MR | Zbl

[12] Lebedeva A. B., Ryabov V. M., “Ob obraschenii preobrazovaniya Laplasa s pomoschyu ryadov Lagerra i kvadraturnykh formul”, Metody vychislenii, 19, Izd-vo S.-Peterburgskogo un-ta, SPb., 2001, 123–139

[13] Matveeva T. A., Ryabov V. M., “O nekotorykh svoistvakh kvadraturnykh formul chislennogo obrascheniya preobrazovaniya Laplasa”, Vestn. S.-Peterburgskogo un-ta. Ser. 1, 2002, no. 1(1), 16–23