Asymptotics of eigenelements of boundary value problems for the Schrödinger operator with a large potential localized on a small set
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 4, pp. 667-682 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Asymptotics of eigenelements of a singularly perturbed boundary value problem for the three-dimensional Schrödinger operator is constructed in a bounded domain with the Dirichlet and Neumann boundary condition. The perturbation is described by a large potential whose support contracts into a point. In the case of the Dirichlet boundary conditions, this problem corresponds to a potential well with infinitely high walls and a narrow finite peak at the bottom.
@article{ZVMMF_2006_46_4_a9,
     author = {A. R. Bikmetov},
     title = {Asymptotics of eigenelements of boundary value problems for the {Schr\"odinger} operator with a~large potential localized on a~small set},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {667--682},
     year = {2006},
     volume = {46},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_4_a9/}
}
TY  - JOUR
AU  - A. R. Bikmetov
TI  - Asymptotics of eigenelements of boundary value problems for the Schrödinger operator with a large potential localized on a small set
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2006
SP  - 667
EP  - 682
VL  - 46
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_4_a9/
LA  - ru
ID  - ZVMMF_2006_46_4_a9
ER  - 
%0 Journal Article
%A A. R. Bikmetov
%T Asymptotics of eigenelements of boundary value problems for the Schrödinger operator with a large potential localized on a small set
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2006
%P 667-682
%V 46
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_4_a9/
%G ru
%F ZVMMF_2006_46_4_a9
A. R. Bikmetov. Asymptotics of eigenelements of boundary value problems for the Schrödinger operator with a large potential localized on a small set. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 4, pp. 667-682. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_4_a9/

[1] Landau L. D., Livshits E. M., Teoreticheskaya fizika, v. 3, Kvantovaya mekhanika. Nerelyativistskaya teoriya, Nauka, M., 1974

[2] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1988 | MR

[3] Sobolev S. L., Izbrannye voprosy teorii funktsionalnykh prostranstv i obobschennykh funktsii, Nauka, M., 1989 | MR

[4] Ladyzhenskaya O. A., Uraltseva H. H., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1977 | Zbl

[5] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR

[6] Mikhailov V. P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1976 | MR | Zbl

[7] Oleinik O. A., Iosifyan G. A., Shamaev A. C., Matematicheskie zadachi teorii silno neodnorodnykh uprugikh sred, MGU, M., 1990

[8] Kondratev V. A., Oleinik O. A., “Kraevye zadachi dlya sistemy teorii uprugosti v neogranichennykh oblastyakh. Neravenstva Korna”, Uspekhi matem. nauk, 43:5 (1988), 55–98

[9] Gadylshin P. P., “O sobstvennykh chastotakh tel s tonkimi otrostkami. I. Skhodimost i otsenki”, Matem. zametki, 54:6 (1993), 10–21 | MR

[10] Gadylshin P. P., “Metod soglasovaniya asimptoticheskikh razlozhenii v singulyarno vozmuschennoi kraevoi zadache dlya operatora Laplasa”, Itogi nauki i tekhn. Sovrem. matem. i ee prilozh. Tematich. obzory, 5, VINITI, M., 2003, 3–32

[11] Borisov D. I., “O singulyarno vozmuschennoi kraevoi zadache dlya Laplasiana v tsilindre”, Differents. ur-ya, 38:8 (2002), 1071–1078 | MR | Zbl

[12] Ilin A. M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989 | MR

[13] Mazya V. G., Nazarov S. P., Plamenevskii B. A., “Asimptoticheskie razlozheniya sobstvennykh chisel kraevykh zadach dlya operatora Laplasa v oblastyakh s malymi otverstiyami”, Izv. AN SSSR, 48:2 (1984), 347–371 | MR