Stationary internal layers in a reaction-advection-diffusion integro-differential system
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 4, pp. 624-646 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A class of singularly perturbed nonlinear integro-differential problems with solutions involving internal transition layers (contrast structures) is considered. An asymptotic expansion of these solutions with respect to a small parameter is constructed, and the stability of stationary solutions to the associated integro-parabolic problems is investigated. The asymptotics are substantiated using the asymptotic method of differential inequalities, which is extended to the new class of problems. The method is based on well-known theorems about differential inequalities and on the idea of using formal asymptotics for constructing upper and lower solutions in singularly perturbed problems with internal and boundary layers.
@article{ZVMMF_2006_46_4_a7,
     author = {N. N. Nefedov and O. E. Omel'chenko and L. Recke},
     title = {Stationary internal layers in a~reaction-advection-diffusion integro-differential system},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {624--646},
     year = {2006},
     volume = {46},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_4_a7/}
}
TY  - JOUR
AU  - N. N. Nefedov
AU  - O. E. Omel'chenko
AU  - L. Recke
TI  - Stationary internal layers in a reaction-advection-diffusion integro-differential system
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2006
SP  - 624
EP  - 646
VL  - 46
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_4_a7/
LA  - ru
ID  - ZVMMF_2006_46_4_a7
ER  - 
%0 Journal Article
%A N. N. Nefedov
%A O. E. Omel'chenko
%A L. Recke
%T Stationary internal layers in a reaction-advection-diffusion integro-differential system
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2006
%P 624-646
%V 46
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_4_a7/
%G ru
%F ZVMMF_2006_46_4_a7
N. N. Nefedov; O. E. Omel'chenko; L. Recke. Stationary internal layers in a reaction-advection-diffusion integro-differential system. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 4, pp. 624-646. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_4_a7/

[1] Vasileva A. B., Butuzov V. F., Nefedov H. H., “Kontrastnye struktury v singulyarno vozmuschennykh zadachakh”, Fundament. i prikl. matem., 4 (1998), 799–851 | MR

[2] Pao C. V., Nonlinear parabolic and elliptic equations, Plenum Press, New York, 1992 | MR

[3] Nefedov H. H., Nikitin A. G., “Razvitie asimptoticheskogo metoda differentsialnykh neravenstv dlya reshenii tipa stupenki v singulyarno vozmuschennykh integrodifferentsialnykh uravneniyakh”, Zh. vychisl. matem. i matem. fiz., 41:7 (2001), 1057–1066 | MR | Zbl

[4] Vasileva A. B., Butuzov V. F., Asimptoticheskie razlozheniya reshenii singulyarno vozmuschennykh uravnenii, Nauka, M., 1973 | MR

[5] Howes F. A., Boundary-interior layer interactions in nonlinear singular perturbation theory, Memoirs Amer. Math. Soc., 203, 1978 | MR | Zbl

[6] Vasileva A. B., “Kontrastnye struktury tipa stupenki v kvazilineinykh differentsialnykh uravneniyakh vtorogo poryadka”, Zh. vychisl. matem. i matem. fiz., 35:4 (1995), 520–531 | MR

[7] Nefedov H. H., Omelchenko O. E., “Pogransloinye resheniya v kvazilineinykh integrodifferentsialnykh uravneniyakh vtorogo poryadka”, Zh. vychisl. matem. i matem. fiz., 42:4 (2002), 491–503 | MR | Zbl

[8] Amann H., “Periodic solutions of semilinear parabolic equations”, Nonlinear Analysis: a Collection of Papers in Honor of Erich Rothe, Acad. Press, New York, 1978, 1–29 | MR

[9] Amann H., “Existence and multiplicity theorems for semilinear elliptic boundary value problems”, Math. Z, 150 (1976), 281–295 | DOI | MR | Zbl

[10] Butuzov V. F., Nedelko I. V., “Asimptoticheskaya ustoichivost reshenii singulyarno vozmuschennykh kraevykh zadach s pogranichnymi i vnutrennimi sloyami”, Differents. ur-niya, 36:2 (2000), 198–208 | MR | Zbl