Implicit and efficient schemes for a parabolic equation in a spherical layer
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 4, pp. 605-614 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An implicit and an efficient three-level scheme for a parabolic equation in spherical coordinates is constructed in a spherical layer. No axial symmetry is assumed. The convergence rates of the schemes are estimated under minimum requirements on the initial data. The estimates are uniform with respect to the inner diameter of the domain. The order of convergence is $\tau^{\alpha/2}+h^\alpha$, $\alpha=1,2$, depending on the smoothness of the data. The results remain valid for a domain without a hole.
@article{ZVMMF_2006_46_4_a5,
     author = {E. I. Aksenova},
     title = {Implicit and efficient schemes for a~parabolic equation in a~spherical layer},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {605--614},
     year = {2006},
     volume = {46},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_4_a5/}
}
TY  - JOUR
AU  - E. I. Aksenova
TI  - Implicit and efficient schemes for a parabolic equation in a spherical layer
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2006
SP  - 605
EP  - 614
VL  - 46
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_4_a5/
LA  - ru
ID  - ZVMMF_2006_46_4_a5
ER  - 
%0 Journal Article
%A E. I. Aksenova
%T Implicit and efficient schemes for a parabolic equation in a spherical layer
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2006
%P 605-614
%V 46
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_4_a5/
%G ru
%F ZVMMF_2006_46_4_a5
E. I. Aksenova. Implicit and efficient schemes for a parabolic equation in a spherical layer. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 4, pp. 605-614. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_4_a5/

[1] Samarskii A. A., Vvedenie v teoriyu raznostnykh skhem, Nauka, M., 1971 | MR | Zbl

[2] Dyakonov E. G., Raznostnye metody resheniya kraevykh zadach, v. 2, Izd-vo MGU, M., 1972

[3] Zlotnik A. A., Proektsionno-raznostnye skhemy dlya nestatsionarnykh zadach s negladkimi dannymi, Dis. $\dots$ kand. fiz.-matem. nauk, MGU, M., 1979

[4] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva H. H., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967

[5] Bakhvalov N. S., “O svoistvakh optimalnykh metodov resheniya zadach matematicheskoi fiziki”, Zh. vychisl. matem. i matem. fiz., 10:3 (1970), 555–568 | MR | Zbl

[6] Fryazinov I. V., “Ob odnom klasse skhem dlya uravnenii parabolicheskogo tipa”, Zh. vychisl. matem. i matem. fiz., 15:1 (1975), 113–125 | Zbl

[7] Zlotnik A. A., “O skorosti skhodimosti proektsionno-raznostnoi skhemy s rasscheplyayuschimsya operatorom dlya parabolicheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 20:2 (1980), 422–432 | MR | Zbl

[8] Oganesyan L. A., Rukhovets L. A., Variatsionno-raznostnye metody resheniya ellipticheskikh uravnenii, AN ArmSSR, Erevan, 1979

[9] Shishkin G. I., “Reshenie pervoi kraevoi zadachi dlya ellipticheskogo uravneniya v oblasti s malym otverstiem”, Differents. ur-niya s malym parametrom, Uralskii nauchnyi tsentr AN SSSR, Sverdlovsk, 1980, 138–150 | MR

[10] Bykova E. I., “Otsenka skorosti skhodimosti proektsionno-raznostnykh skhem dlya parabolicheskikh uravnenii v oblasti s malym otverstiem”, Zh. vychisl. matem. i matem. fiz., 24:11 (1984), 1694–1703 | MR | Zbl

[11] Efremova T. S., Fryazinov I. V., “Ob ekonomichnykh skhemakh dlya odnoi modifikatsii tretei kraevoi zadachi”, Zh. vychisl. matem. i matem. fiz., 13:2 (1973), 356–364 | MR | Zbl

[12] Bakirova M. I., Fryazinov I. V., “Ob iteratsionnom metode peremennykh napravlenii dlya raznostnogo uravneniya Puassona v krivolineinykh ortogonalnykh koordinatakh”, Zh. vychisl. matem. i matem. fiz., 13:4 (1973), 907–922 | MR | Zbl

[13] Bykova E. I., “Proektsionno-raznostnye skhemy s rasscheplyayuschimsya operatorom dlya parabolicheskikh uravnenii s osobennostyami v koeffitsientakh”, Zh. vychisl. matem. i matem. fiz., 24:1 (1984), 47–52 | MR | Zbl

[14] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971 | Zbl

[15] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 | MR | Zbl