On the solvability and regularity of comparison problems for text fragments
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 4, pp. 763-768
Cet article a éte moissonné depuis la source Math-Net.Ru
Within the framework of the algebraic approach to the synthesis of correct algorithms, a class of problems is studied in which the elements of the initial-information space are numerical descriptions of pairs of text fragments. Solution algorithms use these descriptions to classify the original pairs of fragments according to the degree of their similarity or dissimilarity (in a certain sense). Solvability and regularity criteria for such problems are derived. The special case of constructing monotone solutions to the problems is discussed. Criteria for the monotone solvability and monotone regularity of the problems are proved.
@article{ZVMMF_2006_46_4_a15,
author = {G. V. Nikitov},
title = {On the solvability and regularity of comparison problems for text fragments},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {763--768},
year = {2006},
volume = {46},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_4_a15/}
}
TY - JOUR AU - G. V. Nikitov TI - On the solvability and regularity of comparison problems for text fragments JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2006 SP - 763 EP - 768 VL - 46 IS - 4 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_4_a15/ LA - ru ID - ZVMMF_2006_46_4_a15 ER -
G. V. Nikitov. On the solvability and regularity of comparison problems for text fragments. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 4, pp. 763-768. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_4_a15/
[1] Zhuravlev Yu. I., “Ob algebraicheskom podkhode k resheniyu zadach raspoznavaniya i klassifikatsii”, Probl. kibernetiki, Nauka, M., 1978, 5–68
[2] Rudakov K. V., “Universalnye i lokalnye ogranicheniya v probleme korrektsii evristicheskikh algoritmov klassifikatsii”, Kibernetika, 1987, no. 2, 30–35 | MR
[3] Rudakov K. V., Postroenie problemno-orientirovannykh teorii na osnove algebraicheskogo podkhoda k zadacham raspoznavaniya obrazov, Dokl. konf. MMRO-10, M., 2001, 113–115 pp.