Finite-difference scheme for two-scale homogenized equations of one-dimensional motion of a thermoviscoelastic Voigt-type body
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 4, pp. 727-754 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Bakhvalov–Eglit two-scale homogenized equations are used to describe the motion of layered periodic compressible media with rapidly oscillating data. A new finite-difference scheme for a system of such equations is proposed and analyzed in the case of a thermoviscoelastic Voigt-type body. A priori estimates of solutions are derived for nonsmooth data. The existence and uniqueness of discrete solutions are established. A theorem is proved on the convergence of a subsequence of discrete solutions to a weak solution of the problem under study. Simultaneously, a new theorem on the existence of global weak solutions is deduced.
@article{ZVMMF_2006_46_4_a13,
     author = {A. A. Amosov and A. E. Vestfal'skii},
     title = {Finite-difference scheme for two-scale homogenized equations of one-dimensional motion of a~thermoviscoelastic {Voigt-type} body},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {727--754},
     year = {2006},
     volume = {46},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_4_a13/}
}
TY  - JOUR
AU  - A. A. Amosov
AU  - A. E. Vestfal'skii
TI  - Finite-difference scheme for two-scale homogenized equations of one-dimensional motion of a thermoviscoelastic Voigt-type body
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2006
SP  - 727
EP  - 754
VL  - 46
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_4_a13/
LA  - ru
ID  - ZVMMF_2006_46_4_a13
ER  - 
%0 Journal Article
%A A. A. Amosov
%A A. E. Vestfal'skii
%T Finite-difference scheme for two-scale homogenized equations of one-dimensional motion of a thermoviscoelastic Voigt-type body
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2006
%P 727-754
%V 46
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_4_a13/
%G ru
%F ZVMMF_2006_46_4_a13
A. A. Amosov; A. E. Vestfal'skii. Finite-difference scheme for two-scale homogenized equations of one-dimensional motion of a thermoviscoelastic Voigt-type body. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 4, pp. 727-754. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_4_a13/

[1] Bakhvalov N. C., Eglit M. E., “Protsessy v periodicheskikh sredakh, ne opisyvaemye v terminakh srednikh kharakteristik”, Dokl. AN SSSR, 268:4 (1983), 836–840 | MR | Zbl

[2] Bakhvalov N. C., Panasenko G. P., Osrednenie protsessov v periodicheskikh sredakh, Nauka, M., 1984 | MR | Zbl

[3] Amosov A. A., Titov D. A., Zlotnik A. A., “Finite-difference scheme for quasi-averaged equations of one-dimensional motion of a viscous barotropic medium”, Russ. J. Numer. Analys. and Math. Modelling, 11:6 (1996), 445–475 | DOI | MR | Zbl

[4] Amosov A. A., Zlotnik A. A., “Raznostnaya skhema dlya kvaziosrednennykh uravnenii odnomernogo dvizheniya vyazkogo teploprovodnogo gaza s negladkimi dannymi”, Zh. vychisl. matem. i matem. fiz., 39:4 (1999), 592–611 | MR | Zbl

[5] Amosov A. A., “Suschestvovanie globalnykh obobschennykh reshenii uravnenii odnomernogo dvizheniya vyazkogo realnogo gaza s razryvnymi dannymi”, Differents. ur-niya, 36:4 (2000), 486–499 | MR | Zbl

[6] Amosov A. A., “Suschestvovanie globalnykh obobschennykh reshenii uravnenii odnomernoi nelineinoi termovyazkouprugosti s razryvnymi dannymi”, Tr. MIRAN, 236, 2002, 11–19 | MR | Zbl

[7] Amosov A. A., Vestfalsky A. E., “Difference scheme for the system of equations of one-demensional dynamics of a nonlinear thermoviscoelastic body of the Voigt type”, Russ. J. Numer. Analys. and Math. Modelling, 17:3 (2002), 221–248 | MR | Zbl

[8] Amosov A. A., Zlotnik A. A., “Obosnovanie dvukhmasshtabnogo usredneniya uravnenii odnomernoi nelineinoi termovyazkouprugosti s negladkimi dannymi”, Zh. vychisl. matem. i mat. fiz., 41:11 (2001), 1713–1733 | MR | Zbl

[9] Amosov A. A., Zlotnik A. A., “On two-scale homogenized equations of one-dimensional nonlinear thermoviscoelasticity with rapidly oscillating nonsmooth data”, C. r. Acad. Sci. Paris Ser. IIb, 329 (2001), 169–174

[10] Amosov A. A., Vestfalskii A. E., “Edinstvennost resheniya odnoi nelineinoi raznostnoi skhemy dlya uravnenii odnomernogo dvizheniya vyazkogo realnogo gaza s negladkimi dannymi”, Vestn. MEI, 2002, no. 6, 5–13

[11] Andrews G., “On the existence of solutions to the equation $u_{tt}=u_{xxt}+\sigma(u_x)_x$”, J. Differenz. Equat., 35 (1980), 200–231 | DOI | MR

[12] Amosov A. A., Zlotnik A. A., “Raznostnaya skhema dlya uravnenii odnomernogo dvizheniya vyazkogo barotropnogo gaza”, Vychisl. protsessy i sistemy, 4, Nauka, M., 1986, 192–218 | MR