Numerical simulation of critical dependences for symmetric two-layered Josephson junctions
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 4, pp. 700-714 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Partial critical dependences of the form current-magnetic field in a two-layered symmetric Josephson junction are modeled. A numerical experiment shows that, for the zero interaction coefficient between the layers of the junction, jumps of the critical currents corresponding to different distributions of the magnetic fluxes in the layers may appear on the critical curves. This fact allows a mathematical interpretation of the results of some recent experimental results for two-layered junctions as a consequence of discontinuities of partial critical curves.
@article{ZVMMF_2006_46_4_a11,
     author = {P. Kh. Atanasova and T. L. Boyadzhiev and S. N. Dimova},
     title = {Numerical simulation of critical dependences for symmetric two-layered {Josephson} junctions},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {700--714},
     year = {2006},
     volume = {46},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_4_a11/}
}
TY  - JOUR
AU  - P. Kh. Atanasova
AU  - T. L. Boyadzhiev
AU  - S. N. Dimova
TI  - Numerical simulation of critical dependences for symmetric two-layered Josephson junctions
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2006
SP  - 700
EP  - 714
VL  - 46
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_4_a11/
LA  - ru
ID  - ZVMMF_2006_46_4_a11
ER  - 
%0 Journal Article
%A P. Kh. Atanasova
%A T. L. Boyadzhiev
%A S. N. Dimova
%T Numerical simulation of critical dependences for symmetric two-layered Josephson junctions
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2006
%P 700-714
%V 46
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_4_a11/
%G ru
%F ZVMMF_2006_46_4_a11
P. Kh. Atanasova; T. L. Boyadzhiev; S. N. Dimova. Numerical simulation of critical dependences for symmetric two-layered Josephson junctions. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 4, pp. 700-714. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_4_a11/

[1] Boyadzhiev T. L., Pavlov D. V., Puzynin I. V., Vychislenie bifurkatsii ustoichivykh sostoyanii v dvukhsloinykh neodnorodnykh dzhozefsonovskikh perekhodakh, Soobsch. OIYaI R5-89-173, Dubna, 1989 | Zbl

[2] Sakai S., Bodin P., Pedersen N. F., “Fluxons in thin-film superconductor-insulator superlattices”, J. Appl. Phys., 73:5 (1993), 2411–2418 | DOI

[3] Bulaevskii L. N., Zamora M., Baeriswyl D. et al., “Time-dependent equations for phase differences and a collective mode in Josephson-coupled layered superconductors”, Phys. Rev. B, 50:17 (1994), 12831–12834 | DOI

[4] Bulaevskii L. N., Dominguez D., Maley M. P. et al., “Collective mode and the $c$-axis critical current of a Josephson-coupled superconductor at high parallel magnetic fields”, Phys. Rev. B, 53:21 (1996), 14601–14610 | DOI

[5] Nevirkovets I. P., Evetts J. E., Blamire M. G., “Transition from single junction to double junction behavior in sisistype Nb-based devices”, Phys. Letts. A, 187:1 (1994), 119–126 | DOI

[6] Goldobin E., Kohlstedt H., Ustinov A. V., “Tunable phase locking of stacked Josephson flux-flow oscillators”, Appl. Phys. Letts, 68:2 (1996), 250–252 | DOI

[7] Goldobin E., Ustinov A. V., “Current locking in magnetically coupled long Josephson junctions”, Phys. Rev. B, 59:17 (1999), 11532–11538 | DOI

[8] Kleiner R., Muller P., Kohlstedt H. et al., “Dynamic behavior of Josephson-coupled layered structures”, Phys. Rev. B, 50:6 (1994), 3942–3952 | DOI

[9] Song S. N., Auvil P. R., Ulmer M., Ketterson J. B., “Vortex structure and Josephson supercurrent in stacked double Josephson junctions”, Phys. Rev. B, 53:10 (1996), R6018–R6021 | DOI

[10] Koyama T., Tachiki M., “I–V characteristics of Josephson-coupled layered superconductors with longitudinal plasma excitations”, Phys. Rev. B, 54:22 (1996), 16183–16191 | DOI

[11] Krasnov V. M., Winkler D., “Static and dynamic properties of stacked Josephson junctions: Analytic solution”, Phys. Rev. B, 56:14 (1997), 9106–9115 | DOI | MR

[12] Tachiki M., Machida M., “Current understanding of Josephson plasma theory and experiments in HTSC”, Physica, 341–348 (2000), 1493–1498 | DOI

[13] Rumyantsev B. B., “Ob ustoichivosti dvizheniya po otnosheniyu k chasti peremennykh”, Vestn. MGU. Vyp. I. Matem., mekhan., 1957, no. 4, 9–16

[14] Vorotnikov V. I., Partial stability and control, Birkhäuser, Boston, MA, 1998 | MR | Zbl

[15] Galpern Yu. S., Filippov A. T., “Svyazannye sostoyaniya solitonov v neodnorodnykh dzhozefsonovskikh perekhodakh”, Zh. eksperim. i teor. fiz., 86:4 (1984), 1527–1543

[16] Likharev K. K., Dynamics of Josephson junctions and circuits, Gordon and Breach, New York, 1986 | MR

[17] Boyadzhiev T. L., Chislennoe issledovanie kriticheskikh rezhimov v nelineinykh polevykh modelyakh fiziki, Dis. $\dots$ dokt. fiz.-matem. nauk, OIYaI, Dubna, 2002

[18] Semerdzhieva E. G., Boyadzhiev T. L., Shukrinov Yu. M., “Staticheskie vikhri v dlinnykh dzhozefsonovskikh kontaktakh s eksponentsialno izmenyayuscheisya shirinoi”, Fiz. nizkikh t-r, 30:6 (2004), 610–618

[19] Semerdjieva E. G., Boyadjiev T. L., Shukrinov Yu. M., “Vortex structures in exponentially shaped Josephson junctions”, J. Low Temperature Phys., 139:1/2 (2005), 299–308 | DOI

[20] Vystavkin A. N., Drachevskii Yu. F., Koshelets V. P., Serpuchenko I. L., “Obnaruzhenie staticheskikh svyazannykh sostoyanii fluksonov v raspredelennykh dzhozefsonovskikh perekhodakh s neodnorodnostyu”, Fiz. nizkikh t-r, 14:6 (1988), 646

[21] Gelfand I. M., Fomin C. B., Variatsionnoe ischislenie, Nauka, M., 1961

[22] Novozhilov V. V., Osnovy nelineinoi teorii uprugosti, L., M., 1948

[23] Keller Dzh. B., Antman S., Teoriya vetvleniya i nelineinye zadachi na sobstvennye znacheniya, Mir, M., 1974 | Zbl

[24] Jackiw R., “Quantum meanings of classical field theory”, Rev. Mod. Phys., 49:3 (1997), 681–706 | DOI | MR

[25] Rybakov Yu. P., Sanyuk V. I., Mnogomernye solitony, Izd-vo RUDN, M., 2001

[26] Boyadjiev T. L., Todorov M. D., “Minimal length of Josephson junctions with stable fluxon bound states”, Superconducting Sci. and Techn., 15:1 (2002), 1–7 | DOI

[27] Boyadzhiev T. L., Pavlov D. V., Puzynin I. V., Nyutonovskii algoritm vychisleniya kriticheskikh parametrov v odnomernom neodnorodnom dzhozefsonovskom perekhode, Soobsch. OIYaI PI 1-88-409, Dubna, 1988

[28] Boyadzhiev T. L., Pavlov D. V., Puzynin I. V., “Primenenie nepreryvnogo analoga metoda Nyutona dlya vychisleniya bifurkatsionnykh krivykh v dzhozefsonovskikh perekhodakh”, Sb. tr. konf. “Chisl. metody i primeneniya”, Sofiya, 1988

[29] Zhidkov E. P., Makarenko G. I., Puzynin I. V., “Continuous analog of the Newton method in non-linear physical problems”, Phys. Elementary Particles and Atomic Nuclei (JINR, Dubna), 4:1 (1973), 127–166 | MR

[30] Puzynin I. V., Amirkhanov I. V., Zemlyanaya E. V. et al., “The generalised continuous analog of Newton method for numerical study of some nonlinear quantum-field models”, Phys. Elementary Particles and Atomic Nuclei (JINR, Dubna), 30:1 (1999), 210–265 | MR

[31] Thomée V., Galerkin finite element method for parabolic problems, Springer, Berlin, 1997 | MR | Zbl

[32] Bathe K. J., Wilson E., Numerical methods in finite element analysis, Prentice Hall, Englewood Cliffs, 1976 | Zbl

[33] Trenogin B. A., Funktsionalnyi analiz, Fizmatlit, M., 2002

[34] Barashenkov I. V., Zemlyanaya E. V., “Travelling solitons in the damped driven nonlinear Schroedinger equation”, SIAM J. Appl. Math., 64:3 (2004), 800–818 | DOI | MR | Zbl

[35] Zemlyanaya E. B., Barashenkov I. V., “Chislennyi analiz dvizhuschikhsya solitonov v nelineinom uravnenii Shredingera s parametricheskoi nakachkoi i dissipatsiei”, Matem. modelirovanie, 17:1 (2005), 65–78 | MR | Zbl