@article{ZVMMF_2006_46_4_a11,
author = {P. Kh. Atanasova and T. L. Boyadzhiev and S. N. Dimova},
title = {Numerical simulation of critical dependences for symmetric two-layered {Josephson} junctions},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {700--714},
year = {2006},
volume = {46},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_4_a11/}
}
TY - JOUR AU - P. Kh. Atanasova AU - T. L. Boyadzhiev AU - S. N. Dimova TI - Numerical simulation of critical dependences for symmetric two-layered Josephson junctions JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2006 SP - 700 EP - 714 VL - 46 IS - 4 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_4_a11/ LA - ru ID - ZVMMF_2006_46_4_a11 ER -
%0 Journal Article %A P. Kh. Atanasova %A T. L. Boyadzhiev %A S. N. Dimova %T Numerical simulation of critical dependences for symmetric two-layered Josephson junctions %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2006 %P 700-714 %V 46 %N 4 %U http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_4_a11/ %G ru %F ZVMMF_2006_46_4_a11
P. Kh. Atanasova; T. L. Boyadzhiev; S. N. Dimova. Numerical simulation of critical dependences for symmetric two-layered Josephson junctions. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 4, pp. 700-714. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_4_a11/
[1] Boyadzhiev T. L., Pavlov D. V., Puzynin I. V., Vychislenie bifurkatsii ustoichivykh sostoyanii v dvukhsloinykh neodnorodnykh dzhozefsonovskikh perekhodakh, Soobsch. OIYaI R5-89-173, Dubna, 1989 | Zbl
[2] Sakai S., Bodin P., Pedersen N. F., “Fluxons in thin-film superconductor-insulator superlattices”, J. Appl. Phys., 73:5 (1993), 2411–2418 | DOI
[3] Bulaevskii L. N., Zamora M., Baeriswyl D. et al., “Time-dependent equations for phase differences and a collective mode in Josephson-coupled layered superconductors”, Phys. Rev. B, 50:17 (1994), 12831–12834 | DOI
[4] Bulaevskii L. N., Dominguez D., Maley M. P. et al., “Collective mode and the $c$-axis critical current of a Josephson-coupled superconductor at high parallel magnetic fields”, Phys. Rev. B, 53:21 (1996), 14601–14610 | DOI
[5] Nevirkovets I. P., Evetts J. E., Blamire M. G., “Transition from single junction to double junction behavior in sisistype Nb-based devices”, Phys. Letts. A, 187:1 (1994), 119–126 | DOI
[6] Goldobin E., Kohlstedt H., Ustinov A. V., “Tunable phase locking of stacked Josephson flux-flow oscillators”, Appl. Phys. Letts, 68:2 (1996), 250–252 | DOI
[7] Goldobin E., Ustinov A. V., “Current locking in magnetically coupled long Josephson junctions”, Phys. Rev. B, 59:17 (1999), 11532–11538 | DOI
[8] Kleiner R., Muller P., Kohlstedt H. et al., “Dynamic behavior of Josephson-coupled layered structures”, Phys. Rev. B, 50:6 (1994), 3942–3952 | DOI
[9] Song S. N., Auvil P. R., Ulmer M., Ketterson J. B., “Vortex structure and Josephson supercurrent in stacked double Josephson junctions”, Phys. Rev. B, 53:10 (1996), R6018–R6021 | DOI
[10] Koyama T., Tachiki M., “I–V characteristics of Josephson-coupled layered superconductors with longitudinal plasma excitations”, Phys. Rev. B, 54:22 (1996), 16183–16191 | DOI
[11] Krasnov V. M., Winkler D., “Static and dynamic properties of stacked Josephson junctions: Analytic solution”, Phys. Rev. B, 56:14 (1997), 9106–9115 | DOI | MR
[12] Tachiki M., Machida M., “Current understanding of Josephson plasma theory and experiments in HTSC”, Physica, 341–348 (2000), 1493–1498 | DOI
[13] Rumyantsev B. B., “Ob ustoichivosti dvizheniya po otnosheniyu k chasti peremennykh”, Vestn. MGU. Vyp. I. Matem., mekhan., 1957, no. 4, 9–16
[14] Vorotnikov V. I., Partial stability and control, Birkhäuser, Boston, MA, 1998 | MR | Zbl
[15] Galpern Yu. S., Filippov A. T., “Svyazannye sostoyaniya solitonov v neodnorodnykh dzhozefsonovskikh perekhodakh”, Zh. eksperim. i teor. fiz., 86:4 (1984), 1527–1543
[16] Likharev K. K., Dynamics of Josephson junctions and circuits, Gordon and Breach, New York, 1986 | MR
[17] Boyadzhiev T. L., Chislennoe issledovanie kriticheskikh rezhimov v nelineinykh polevykh modelyakh fiziki, Dis. $\dots$ dokt. fiz.-matem. nauk, OIYaI, Dubna, 2002
[18] Semerdzhieva E. G., Boyadzhiev T. L., Shukrinov Yu. M., “Staticheskie vikhri v dlinnykh dzhozefsonovskikh kontaktakh s eksponentsialno izmenyayuscheisya shirinoi”, Fiz. nizkikh t-r, 30:6 (2004), 610–618
[19] Semerdjieva E. G., Boyadjiev T. L., Shukrinov Yu. M., “Vortex structures in exponentially shaped Josephson junctions”, J. Low Temperature Phys., 139:1/2 (2005), 299–308 | DOI
[20] Vystavkin A. N., Drachevskii Yu. F., Koshelets V. P., Serpuchenko I. L., “Obnaruzhenie staticheskikh svyazannykh sostoyanii fluksonov v raspredelennykh dzhozefsonovskikh perekhodakh s neodnorodnostyu”, Fiz. nizkikh t-r, 14:6 (1988), 646
[21] Gelfand I. M., Fomin C. B., Variatsionnoe ischislenie, Nauka, M., 1961
[22] Novozhilov V. V., Osnovy nelineinoi teorii uprugosti, L., M., 1948
[23] Keller Dzh. B., Antman S., Teoriya vetvleniya i nelineinye zadachi na sobstvennye znacheniya, Mir, M., 1974 | Zbl
[24] Jackiw R., “Quantum meanings of classical field theory”, Rev. Mod. Phys., 49:3 (1997), 681–706 | DOI | MR
[25] Rybakov Yu. P., Sanyuk V. I., Mnogomernye solitony, Izd-vo RUDN, M., 2001
[26] Boyadjiev T. L., Todorov M. D., “Minimal length of Josephson junctions with stable fluxon bound states”, Superconducting Sci. and Techn., 15:1 (2002), 1–7 | DOI
[27] Boyadzhiev T. L., Pavlov D. V., Puzynin I. V., Nyutonovskii algoritm vychisleniya kriticheskikh parametrov v odnomernom neodnorodnom dzhozefsonovskom perekhode, Soobsch. OIYaI PI 1-88-409, Dubna, 1988
[28] Boyadzhiev T. L., Pavlov D. V., Puzynin I. V., “Primenenie nepreryvnogo analoga metoda Nyutona dlya vychisleniya bifurkatsionnykh krivykh v dzhozefsonovskikh perekhodakh”, Sb. tr. konf. “Chisl. metody i primeneniya”, Sofiya, 1988
[29] Zhidkov E. P., Makarenko G. I., Puzynin I. V., “Continuous analog of the Newton method in non-linear physical problems”, Phys. Elementary Particles and Atomic Nuclei (JINR, Dubna), 4:1 (1973), 127–166 | MR
[30] Puzynin I. V., Amirkhanov I. V., Zemlyanaya E. V. et al., “The generalised continuous analog of Newton method for numerical study of some nonlinear quantum-field models”, Phys. Elementary Particles and Atomic Nuclei (JINR, Dubna), 30:1 (1999), 210–265 | MR
[31] Thomée V., Galerkin finite element method for parabolic problems, Springer, Berlin, 1997 | MR | Zbl
[32] Bathe K. J., Wilson E., Numerical methods in finite element analysis, Prentice Hall, Englewood Cliffs, 1976 | Zbl
[33] Trenogin B. A., Funktsionalnyi analiz, Fizmatlit, M., 2002
[34] Barashenkov I. V., Zemlyanaya E. V., “Travelling solitons in the damped driven nonlinear Schroedinger equation”, SIAM J. Appl. Math., 64:3 (2004), 800–818 | DOI | MR | Zbl
[35] Zemlyanaya E. B., Barashenkov I. V., “Chislennyi analiz dvizhuschikhsya solitonov v nelineinom uravnenii Shredingera s parametricheskoi nakachkoi i dissipatsiei”, Matem. modelirovanie, 17:1 (2005), 65–78 | MR | Zbl