On the stability and domain of attraction of a stationary nonsmooth limit solution of a singularly perturbed parabolic equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 3, pp. 433-444
Voir la notice de l'article provenant de la source Math-Net.Ru
A stationary solution to the singularly perturbed parabolic equation $-u_t+\varepsilon^2u_{xx}-f(u,x)=0$ with Neumann boundary conditions is considered. The limit of the solution as $\varepsilon\to0$ is a nonsmooth solution to the reduced equation $f(u,x)=0$ that is composed of two intersecting roots of this equation. It is proved that the stationary solution is asymptotically stable, and its global domain of attraction is found.
@article{ZVMMF_2006_46_3_a7,
author = {V. F. Butuzov},
title = {On the stability and domain of attraction of a~stationary nonsmooth limit solution of a~singularly perturbed parabolic equation},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {433--444},
publisher = {mathdoc},
volume = {46},
number = {3},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_3_a7/}
}
TY - JOUR AU - V. F. Butuzov TI - On the stability and domain of attraction of a stationary nonsmooth limit solution of a singularly perturbed parabolic equation JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2006 SP - 433 EP - 444 VL - 46 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_3_a7/ LA - ru ID - ZVMMF_2006_46_3_a7 ER -
%0 Journal Article %A V. F. Butuzov %T On the stability and domain of attraction of a stationary nonsmooth limit solution of a singularly perturbed parabolic equation %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2006 %P 433-444 %V 46 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_3_a7/ %G ru %F ZVMMF_2006_46_3_a7
V. F. Butuzov. On the stability and domain of attraction of a stationary nonsmooth limit solution of a singularly perturbed parabolic equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 3, pp. 433-444. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_3_a7/