Grid approximation of singularly perturbed parabolic equations in the presence of weak and strong transient layers induced by a discontinuous right-hand side
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 3, pp. 407-420 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The initial value problem on a line for singularly perturbed parabolic equations with convective terms is investigated. The first-and the second-order space derivatives are multiplied by the parameters $\varepsilon_1$ and $\varepsilon_2$, respectively, which may take arbitrarily small values. The right-hand side of the equations has a discontinuity of the first kind on the set $\bar\gamma=[x=0]\times[0,T]$. Depending on the relation between the parameters, the appearing transient layers can be parabolic or regular, and the “intensity” of the layer (the maximum of the singular component) on the left and on the right of $\bar\gamma$ can be substantially different. If the parameter $\varepsilon_2$ at the convective term is finite, the transient layer is weak. For the initial value problems under consideration, the condensing grid method is used to construct finite difference schemes whose solutions converge (in the discrete maximum norm) to the exact solution uniformly with respect to $\varepsilon_1$ and $\varepsilon_2$ (when $\varepsilon_2$ is finite and, therefore, the transient layers are weak, no condensing grids are required).
@article{ZVMMF_2006_46_3_a5,
     author = {G. I. Shishkin},
     title = {Grid approximation of singularly perturbed parabolic equations in the presence of weak and strong transient layers induced by a~discontinuous right-hand side},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {407--420},
     year = {2006},
     volume = {46},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_3_a5/}
}
TY  - JOUR
AU  - G. I. Shishkin
TI  - Grid approximation of singularly perturbed parabolic equations in the presence of weak and strong transient layers induced by a discontinuous right-hand side
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2006
SP  - 407
EP  - 420
VL  - 46
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_3_a5/
LA  - ru
ID  - ZVMMF_2006_46_3_a5
ER  - 
%0 Journal Article
%A G. I. Shishkin
%T Grid approximation of singularly perturbed parabolic equations in the presence of weak and strong transient layers induced by a discontinuous right-hand side
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2006
%P 407-420
%V 46
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_3_a5/
%G ru
%F ZVMMF_2006_46_3_a5
G. I. Shishkin. Grid approximation of singularly perturbed parabolic equations in the presence of weak and strong transient layers induced by a discontinuous right-hand side. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 3, pp. 407-420. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_3_a5/

[1] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989 | MR

[2] Marchuk G. I., Metody vychislitelnoi matematiki, Nauka, M., 1989 | MR

[3] Shishkin G. I., Setochnye approksimatsii singulyarno vozmuschennykh ellipticheskikh i parabolicheskikh uravnenii, UrO RAN, Ekaterinburg, 1992

[4] Miller J. J. H., O'Riordan E., Shishkin G. I., Fitted numerical methods for singular perturbation problems, World Scientific, Singapore, 1996 | MR

[5] Roos H.-G., Stynes M., Tobiska L., Numerical methods for singularly perturbed differential equations. Convectiondiffusion and flow problems, Springer, Berlin, 1996 | MR

[6] Farrell P. A.,Hegarty A. F., Miller J. J. H., O'Riordan E., Shishkin G. I., Robust computational techniques for boundary layers, Chapman Hall, Boca Raton; CRC Press, 2000 | MR | Zbl

[7] Shishkin G. I., “Setochnaya approksimatsiya singulyarno vozmuschennykh vozmuschennogo parabolicheskogo uravneniya reaktsii-diffuzii s bystro dvizhuschimsya istochnikom”, Zh. vychisl. matem. i matem. fiz., 42:6 (2002), 823–836 | MR | Zbl

[8] Shishkin G. I., “Setochnaya approksimatsiya singulyarno vozmuschennogo parabolicheskogo uravneniya reaktsii-diffuzii s dvizhuschimsya sosredotochennym istochnikom”, Matem. modelirovanie, 15:2 (2003), 43–61 | MR | Zbl

[9] Titov V. A., Shishkin G. I., “O chislennom reshenii parabolicheskogo uravneniya s malymi parametrami pri proizvodnykh po prostranstvennym peremennym”, Raznostnye metody resheniya kraevykh zadach s malym parametrom i raznymi kraevymi usloviyami, Sverdlovsk, 1976, 38–43 | MR

[10] Shishkin G. I., “Raznostnaya skhema dlya singulyarno vozmuschennogo differentsialnogo uravneniya”, Chisl. metody mekhan. sploshnoi sredy. Novosibirsk: ITPM SO AN SSSR, 13:1 (1982), 147–164 | MR | Zbl

[11] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva H. H., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967

[12] Shishkin G. I., “Approksimatsiya reshenii singulyarno vozmuschennykh kraevykh zadach s s parabolicheskim pogranichnym sloem”, Zh. vychisl. matem. i matem. fiz., 29:7 (1989), 963–977 | MR