Numerical stability of a method for transferring boundary conditions
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 3, pp. 401-406
Cet article a éte moissonné depuis la source Math-Net.Ru
It is proved that a previously proposed method for transferring boundary conditions as applied to a boundary value problem for a linear system of ordinary differential equations gives numerically stable results if this problem is stable with respect to small variations in the input data.
@article{ZVMMF_2006_46_3_a4,
author = {A. A. Abramov},
title = {Numerical stability of a~method for transferring boundary conditions},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {401--406},
year = {2006},
volume = {46},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_3_a4/}
}
TY - JOUR AU - A. A. Abramov TI - Numerical stability of a method for transferring boundary conditions JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2006 SP - 401 EP - 406 VL - 46 IS - 3 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_3_a4/ LA - ru ID - ZVMMF_2006_46_3_a4 ER -
A. A. Abramov. Numerical stability of a method for transferring boundary conditions. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 3, pp. 401-406. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_3_a4/
[1] Abramov A. A., “O perenose granichnykh uslovii dlya sistem lineinykh obyknovennykh differentsialnykh uravnenii (variant metoda progonki)”, Zh. vychisl. matem. i matem. fiz., 1:3 (1961), 542–545 | MR | Zbl
[2] Abramov A. A., “Variant metoda progonki”, Zh. vychisl. matem. i matem. fiz., 1:2 (1961), 349–351 | MR | Zbl
[3] Petry T., “On the stability of the Abramov transfer for differential-algebraic equations of index 1”, SIAM J. Numer. Analys., 35:1 (1998), 201–216 | DOI | MR | Zbl
[4] Kurochkin C. B., “O svoistvakh ustoichivosti metodov differentsialnoi progonki”, Zh. vychisl. matem. i matem. fiz., 40:11 (2000), 1611–1614 | MR | Zbl