Optimal location of interconnected facilities on tree networks subject to distance constraints
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 3, pp. 395-400 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Optimal location of interconnected facilities on tree networks is considered in the case when some of the nodes of the network contain existing facilities. The distances between the facilities must satisfy maximum constraints. Polynomial algorithms for the solution of this problem are proposed.
@article{ZVMMF_2006_46_3_a3,
     author = {G. G. Zabudskii},
     title = {Optimal location of interconnected facilities on tree networks subject to distance constraints},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {395--400},
     year = {2006},
     volume = {46},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_3_a3/}
}
TY  - JOUR
AU  - G. G. Zabudskii
TI  - Optimal location of interconnected facilities on tree networks subject to distance constraints
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2006
SP  - 395
EP  - 400
VL  - 46
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_3_a3/
LA  - ru
ID  - ZVMMF_2006_46_3_a3
ER  - 
%0 Journal Article
%A G. G. Zabudskii
%T Optimal location of interconnected facilities on tree networks subject to distance constraints
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2006
%P 395-400
%V 46
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_3_a3/
%G ru
%F ZVMMF_2006_46_3_a3
G. G. Zabudskii. Optimal location of interconnected facilities on tree networks subject to distance constraints. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 3, pp. 395-400. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_3_a3/

[1] Zabudskii G. G., Filimonov D. V., “Reshenie diskretnoi minimaksnoi zadachi razmescheniya na seti”, Izv. vuzov. Matematika, 2004, no. 5, 33–36 | MR | Zbl

[2] Francis R. L., Lowe T. J., Ratliff D. H., “Distance constraints for tree network multifacility location problems”, Operat. Res., 26:3 (1978), 570–595 | DOI | MR

[3] Erkut E., Francis R. L., Tamir A., “Distance-constrained multifacility minimax location problems on tree network”, Networks, 22 (1992), 37–54 | DOI | MR | Zbl

[4] Erkut E., Francis R. L., Lowe T. J., Tamir A., “Equivalent mathematical programming formulations of monotonie tree network location problems”, Operat. Res., 37:3 (1989), 447–461 | DOI | MR | Zbl

[5] Papadimitriu X., Staiglits K., Kombinatornaya optimizatsiya. Algoritmy i slozhnost, Mir, M., 1985 | MR

[6] Picard J. C., Ratliff D. H., “A cut approach to the rectilinear distance facility location problem”, Operat. Res., 26:3 (1978), 422–433 | DOI | MR | Zbl