Direct numerical simulation of turbulent flows in eccentric pipes
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 3, pp. 509-526 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A numerical algorithm was developed for solving the incompressible Navier–Stokes equations in curvilinear orthogonal coordinates. The algorithm is based on a central-difference discretization in space and on a third-order accurate semi-implicit Runge–Kutta scheme for time integration. The discrete equations inherit some properties of the original differential equations, in particular, the neutrality of the convective terms and the pressure gradient in the kinetic energy production. The method was applied to the direct numerical simulation of turbulent flows between two eccentric cylinders. Numerical computations were performed at $\operatorname{Re}=4000$ (where the Reynolds number $\operatorname{Re}$ was defined in terms of the mean velocity and the hydraulic diameter). It was found that two types of flow develop depending on the geometric parameters. In the flow of one type, turbulent fluctuations were observed over the entire cross section of the pipe, including the narrowest gap, where the local Reynolds number was only about 500. The flow of the other type was divided into turbulent and laminar regions (in the wide and narrow parts of the gap, respectively).
@article{ZVMMF_2006_46_3_a14,
     author = {N. V. Nikitin},
     title = {Direct numerical simulation of turbulent flows in eccentric pipes},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {509--526},
     year = {2006},
     volume = {46},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_3_a14/}
}
TY  - JOUR
AU  - N. V. Nikitin
TI  - Direct numerical simulation of turbulent flows in eccentric pipes
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2006
SP  - 509
EP  - 526
VL  - 46
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_3_a14/
LA  - ru
ID  - ZVMMF_2006_46_3_a14
ER  - 
%0 Journal Article
%A N. V. Nikitin
%T Direct numerical simulation of turbulent flows in eccentric pipes
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2006
%P 509-526
%V 46
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_3_a14/
%G ru
%F ZVMMF_2006_46_3_a14
N. V. Nikitin. Direct numerical simulation of turbulent flows in eccentric pipes. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 3, pp. 509-526. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_3_a14/

[1] Moin P., Mahesh K., “Direct numerical simulation: a tool in turbulence research”, Ann. Rev. Fluid Mech., 30 (1998), 539–578 | DOI | MR

[2] Kim J., Moin P., Moser R., “Turbulence statistics in fully developed channel flow at low Reynolds number”, J. Fluid Mech., 177 (1987), 133–166 | DOI | Zbl

[3] Spalart P. R., “Direct simulation of a turbulent boundary layer up to $\operatorname{Re}_\theta=1410$”, J. Fluid Mech., 187 (1988), 61–98 | DOI | Zbl

[4] Eggels J. G. M., Unger F., Weiss MM. et al., “Fully developed turbulent pipe flow: a comparison between direct numerical simulation and experiment”, J. Fluid Mech., 268 (1994), 175–209 | DOI

[5] Nikitin H. B., “Pryamoe chislennoe modelirovanie trekhmernykh turbulentnykh techenii v trubakh krugovogo secheniya”, Izv. RAN. Mekhan. zhidkosti i gaza, 1994, no. 6, 14–26 | MR

[6] Nikitin N. V., “Statisticheskie kharakteristiki pristennoi turbulentnosti”, Izv. RAN. Mekhan. zhidkosti i gaza, 1996, no. 3, 32–43 | Zbl

[7] Demuren A. O., Rodi W., “Calculation of turbulence-driven secondary motion in non-circular ducts”, J. Fluid Mech., 140 (1984), 189–222 | DOI | Zbl

[8] Gavrilakis S., “Numerical simulation of low-Reynolds-number turbulent flow through a straight square duct”, J. Fluid Mech., 244 (1992), 101–129 | DOI

[9] Huser A., Biringen S., “Direct numerical simulation of turbulent flow in a square duct”, J. Fluid Mech., 257 (1993), 65–95 | DOI | Zbl

[10] Nikitin H. B., “Chislennoe modelirovanie turbulentnykh techenii v trube kvadratnogo secheniya”, Dokl. RAN, 353:3 (1997), 338–342 | Zbl

[11] Nikitin N., Yakhot A., “Direct numerical simulation of turbulent flow in elliptical ducts”, J. Fluid Mech., 532 (2005), 141–164 | DOI | MR | Zbl

[12] Jimenez J., Pinelli A., “The autonomous cycle of near-wall turbulence”, J. Fluid Mech., 389 (1999), 335–359 | DOI | MR | Zbl

[13] Kim J., Moin P., “Application of a fractional-step method to incompressible Navier–Stokes equations”, J. Comput. Phys., 59 (1985), 308–323 | DOI | MR | Zbl

[14] Rai M. M., Moin P., “Direct simulations of turbulent flow using finite-difference schemes”, J. Comput. Phys., 96 (1991), 15–53 | DOI | Zbl

[15] Spalart P. R., Moser R. D., Rogers M., “Spectral methods for the Navier–Stokes equations with one infinite and two periodic directions”, J. Comput. Phys., 96 (1991), 297–324 | DOI | MR | Zbl

[16] Verzicco R., Orlandi P., “A finite-difference scheme for the three-dimensional incompressible flows in cylindrical coordinates”, J. Comput. Phys., 123 (1996), 402–414 | DOI | MR | Zbl

[17] Nikitin N., “Third-order-accurate semi-implicit Runge–Kutta scheme for incompressible Navier–Stokes equations”, Internat. J. Numer. Methods Fluids, 51:2 (2006), 221–233 | DOI | MR | Zbl

[18] Nikitin H. B., “Spektralno-konechno-raznostnyi metod rascheta turbulentnykh techenii neszhimaemoi zhidkosti v trubakh i kanalakh”, Zh. vychisl. matem. i matem. fiz., 34:6 (1994), 909–925 | MR | Zbl

[19] Brown D. L., Cortez R., Minion M. L., “Accurate projection methods for the incompressible Navier–Stokes equations”, J. Comput. Phys., 168 (2001), 464–499 | DOI | MR | Zbl

[20] Dukowicz J. K., Dvinsky A. S., “Approximate factorization as a high order splitting for the implicit incompressible flow equations”, J. Comput. Phys., 102 (1992), 336–347 | DOI | MR | Zbl

[21] Perot J. B., “An analysis of the fractional step method”, J. Comput. Phys., 108 (1993), 51–58 | DOI | MR | Zbl

[22] Nikitin H. B., “Prostranstvennyi podkhod k chislennomu modelirovaniyu turbulentnosti v trubakh”, Dokl. RAN, 343:6 (1995), 767–770 | MR | Zbl

[23] Nikitin N. V., “Chislennoe issledovanie laminarno-turbulentnogo perekhoda v krugloi trube pod deistviem periodicheskikh vkhodnykh vozmuschenii”, Izv. RAN. Mekhan. zhidkosti i gaza, 2001, no. 2, 42–55 | Zbl

[24] Jimenez J., Moin P., “The minimal flow unit in near-wall turbulence”, J. Fluid Mech., 225 (1991), 213–240 | DOI | Zbl

[25] Harlow F. H., Welsh J. E., “Numerical calculation of time-dependent viscous incompressible flow with free surface”, Phys. Fluids, 8 (1965), 2182–2189 | DOI | Zbl

[26] Samarskii A. A., Nikolaev E. C., Metody resheniya setochnykh uravnenii, Nauka, M., 1978 | MR

[27] Swarztrauber P. N., “A direct method for the discrete solution of separable elliptic equations”, SIAM J. Numer. Analys., 11 (1974), 1136–1150 | DOI | MR

[28] Choi H., Moin P., “Effects of the computational time step on numerical solutions of turbulent flow”, J. Comput. Phys., 113 (1994), 1–4 | DOI | Zbl

[29] Ham F. E., Lien F. S., Strong A. B., “A fully conservative second-order finite difference scheme for incompressible flow on nonuniform grids”, J. Comput. Phys., 177 (2002), 117–133 | DOI | Zbl

[30] Nikitin H. B., Pryamoe chislennoe modelirovanie turbulentnykh techenii v trubakh, Avtoref. dis. $\dots$ dokt. fiz.-matem. nauk, MGU, M., 1996