@article{ZVMMF_2006_46_3_a14,
author = {N. V. Nikitin},
title = {Direct numerical simulation of turbulent flows in eccentric pipes},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {509--526},
year = {2006},
volume = {46},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_3_a14/}
}
TY - JOUR AU - N. V. Nikitin TI - Direct numerical simulation of turbulent flows in eccentric pipes JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2006 SP - 509 EP - 526 VL - 46 IS - 3 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_3_a14/ LA - ru ID - ZVMMF_2006_46_3_a14 ER -
N. V. Nikitin. Direct numerical simulation of turbulent flows in eccentric pipes. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 3, pp. 509-526. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_3_a14/
[1] Moin P., Mahesh K., “Direct numerical simulation: a tool in turbulence research”, Ann. Rev. Fluid Mech., 30 (1998), 539–578 | DOI | MR
[2] Kim J., Moin P., Moser R., “Turbulence statistics in fully developed channel flow at low Reynolds number”, J. Fluid Mech., 177 (1987), 133–166 | DOI | Zbl
[3] Spalart P. R., “Direct simulation of a turbulent boundary layer up to $\operatorname{Re}_\theta=1410$”, J. Fluid Mech., 187 (1988), 61–98 | DOI | Zbl
[4] Eggels J. G. M., Unger F., Weiss MM. et al., “Fully developed turbulent pipe flow: a comparison between direct numerical simulation and experiment”, J. Fluid Mech., 268 (1994), 175–209 | DOI
[5] Nikitin H. B., “Pryamoe chislennoe modelirovanie trekhmernykh turbulentnykh techenii v trubakh krugovogo secheniya”, Izv. RAN. Mekhan. zhidkosti i gaza, 1994, no. 6, 14–26 | MR
[6] Nikitin N. V., “Statisticheskie kharakteristiki pristennoi turbulentnosti”, Izv. RAN. Mekhan. zhidkosti i gaza, 1996, no. 3, 32–43 | Zbl
[7] Demuren A. O., Rodi W., “Calculation of turbulence-driven secondary motion in non-circular ducts”, J. Fluid Mech., 140 (1984), 189–222 | DOI | Zbl
[8] Gavrilakis S., “Numerical simulation of low-Reynolds-number turbulent flow through a straight square duct”, J. Fluid Mech., 244 (1992), 101–129 | DOI
[9] Huser A., Biringen S., “Direct numerical simulation of turbulent flow in a square duct”, J. Fluid Mech., 257 (1993), 65–95 | DOI | Zbl
[10] Nikitin H. B., “Chislennoe modelirovanie turbulentnykh techenii v trube kvadratnogo secheniya”, Dokl. RAN, 353:3 (1997), 338–342 | Zbl
[11] Nikitin N., Yakhot A., “Direct numerical simulation of turbulent flow in elliptical ducts”, J. Fluid Mech., 532 (2005), 141–164 | DOI | MR | Zbl
[12] Jimenez J., Pinelli A., “The autonomous cycle of near-wall turbulence”, J. Fluid Mech., 389 (1999), 335–359 | DOI | MR | Zbl
[13] Kim J., Moin P., “Application of a fractional-step method to incompressible Navier–Stokes equations”, J. Comput. Phys., 59 (1985), 308–323 | DOI | MR | Zbl
[14] Rai M. M., Moin P., “Direct simulations of turbulent flow using finite-difference schemes”, J. Comput. Phys., 96 (1991), 15–53 | DOI | Zbl
[15] Spalart P. R., Moser R. D., Rogers M., “Spectral methods for the Navier–Stokes equations with one infinite and two periodic directions”, J. Comput. Phys., 96 (1991), 297–324 | DOI | MR | Zbl
[16] Verzicco R., Orlandi P., “A finite-difference scheme for the three-dimensional incompressible flows in cylindrical coordinates”, J. Comput. Phys., 123 (1996), 402–414 | DOI | MR | Zbl
[17] Nikitin N., “Third-order-accurate semi-implicit Runge–Kutta scheme for incompressible Navier–Stokes equations”, Internat. J. Numer. Methods Fluids, 51:2 (2006), 221–233 | DOI | MR | Zbl
[18] Nikitin H. B., “Spektralno-konechno-raznostnyi metod rascheta turbulentnykh techenii neszhimaemoi zhidkosti v trubakh i kanalakh”, Zh. vychisl. matem. i matem. fiz., 34:6 (1994), 909–925 | MR | Zbl
[19] Brown D. L., Cortez R., Minion M. L., “Accurate projection methods for the incompressible Navier–Stokes equations”, J. Comput. Phys., 168 (2001), 464–499 | DOI | MR | Zbl
[20] Dukowicz J. K., Dvinsky A. S., “Approximate factorization as a high order splitting for the implicit incompressible flow equations”, J. Comput. Phys., 102 (1992), 336–347 | DOI | MR | Zbl
[21] Perot J. B., “An analysis of the fractional step method”, J. Comput. Phys., 108 (1993), 51–58 | DOI | MR | Zbl
[22] Nikitin H. B., “Prostranstvennyi podkhod k chislennomu modelirovaniyu turbulentnosti v trubakh”, Dokl. RAN, 343:6 (1995), 767–770 | MR | Zbl
[23] Nikitin N. V., “Chislennoe issledovanie laminarno-turbulentnogo perekhoda v krugloi trube pod deistviem periodicheskikh vkhodnykh vozmuschenii”, Izv. RAN. Mekhan. zhidkosti i gaza, 2001, no. 2, 42–55 | Zbl
[24] Jimenez J., Moin P., “The minimal flow unit in near-wall turbulence”, J. Fluid Mech., 225 (1991), 213–240 | DOI | Zbl
[25] Harlow F. H., Welsh J. E., “Numerical calculation of time-dependent viscous incompressible flow with free surface”, Phys. Fluids, 8 (1965), 2182–2189 | DOI | Zbl
[26] Samarskii A. A., Nikolaev E. C., Metody resheniya setochnykh uravnenii, Nauka, M., 1978 | MR
[27] Swarztrauber P. N., “A direct method for the discrete solution of separable elliptic equations”, SIAM J. Numer. Analys., 11 (1974), 1136–1150 | DOI | MR
[28] Choi H., Moin P., “Effects of the computational time step on numerical solutions of turbulent flow”, J. Comput. Phys., 113 (1994), 1–4 | DOI | Zbl
[29] Ham F. E., Lien F. S., Strong A. B., “A fully conservative second-order finite difference scheme for incompressible flow on nonuniform grids”, J. Comput. Phys., 177 (2002), 117–133 | DOI | Zbl
[30] Nikitin H. B., Pryamoe chislennoe modelirovanie turbulentnykh techenii v trubakh, Avtoref. dis. $\dots$ dokt. fiz.-matem. nauk, MGU, M., 1996