Numerical investigation of trapped modes in an irregular waveguide
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 3, pp. 501-508 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown by means of a numerical experiment that an arbitrary asymmetric perturbation of the function describing a dielectric insert in a waveguide, in the general case, results in vanishing of the trapped mode; i.e., it ceases to exist.
@article{ZVMMF_2006_46_3_a13,
     author = {A. V. Tikhonov},
     title = {Numerical investigation of trapped modes in an irregular waveguide},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {501--508},
     year = {2006},
     volume = {46},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_3_a13/}
}
TY  - JOUR
AU  - A. V. Tikhonov
TI  - Numerical investigation of trapped modes in an irregular waveguide
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2006
SP  - 501
EP  - 508
VL  - 46
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_3_a13/
LA  - ru
ID  - ZVMMF_2006_46_3_a13
ER  - 
%0 Journal Article
%A A. V. Tikhonov
%T Numerical investigation of trapped modes in an irregular waveguide
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2006
%P 501-508
%V 46
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_3_a13/
%G ru
%F ZVMMF_2006_46_3_a13
A. V. Tikhonov. Numerical investigation of trapped modes in an irregular waveguide. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 3, pp. 501-508. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_3_a13/

[1] Reilich F., “Das Eigenwertproblem von $\Delta u+\lambda u=0$ in Halbrohren”, Studies and Essays Presented to R. Courant on his 60th Birthday, Intersci. Publs, Inc., New York, 1948, 329–344 | MR

[2] Jones D. S., “The eigenvalues of $\nabla^2 u+\lambda u=0$ when the boundary conditions are on semi-infinite domains”, Proc. Cambridge Soc., 49 (1951), 668–684 | DOI | MR

[3] Sveshnikov A. G., “Printsip predelnogo pogloscheniya dlya volnovodov”, Dokl. AN SSSR, 80:3 (1951), 345–347 | Zbl

[4] Ilinskii A. C., Kravtsov V. V., Sveshnikov A. G., Matematicheskie modeli elektrodinamiki, Vyssh. shkola, M., 1991

[5] Delitsyn A. L., “O zadache rasseyaniya na neodnorodnosti v volnovode”, Zh. vychisl. matem. i matem. fiz., 40:4 (2000), 606–610 | MR | Zbl

[6] Norri D., Friz Zh., Vvedenie v metod konechnykh elementov, Mir, M., 1981 | MR | Zbl

[7] Flannery B. P., Press W. H., Teukolsky S. A., Veiterling W. T., Numerical recipes, Cambridge Univ. Press, New York, 1992

[8] Bogolyubov A. H., Delitsyn A. L., Malykh M. D., “O lovushechnykh modakh volnoveduschikh sistem”, Vestn. MGU, 2001, no. 6, 65–66 | Zbl