Numerical method for solving an inverse problem for a population model
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 3, pp. 490-500 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The inverse problem of determining the growth rate coefficient of biological objects from additional information on their time-dependent density is considered. Two nonlinear integral equations are derived for the unknown coefficient, which is determined on part of its domain from one equation and on the remaining part from the other equation. The nonlinear integral equations are solved by iterative methods. The convergence conditions for the iterative methods are formulated, and results of numerical experiments are presented.
@article{ZVMMF_2006_46_3_a12,
     author = {A. M. Denisov and A. S. Makeev},
     title = {Numerical method for solving an inverse problem for a~population model},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {490--500},
     year = {2006},
     volume = {46},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_3_a12/}
}
TY  - JOUR
AU  - A. M. Denisov
AU  - A. S. Makeev
TI  - Numerical method for solving an inverse problem for a population model
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2006
SP  - 490
EP  - 500
VL  - 46
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_3_a12/
LA  - ru
ID  - ZVMMF_2006_46_3_a12
ER  - 
%0 Journal Article
%A A. M. Denisov
%A A. S. Makeev
%T Numerical method for solving an inverse problem for a population model
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2006
%P 490-500
%V 46
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_3_a12/
%G ru
%F ZVMMF_2006_46_3_a12
A. M. Denisov; A. S. Makeev. Numerical method for solving an inverse problem for a population model. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 3, pp. 490-500. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_3_a12/

[1] Murray J. D., Biology, Springer, New York, 1993

[2] Banks H. J., Kappel F., “Transformation semigroups and $L^1$-approximation for size structured population models”, Semigroup Forum., 38 (1989), 141–155 | DOI | MR | Zbl

[3] Banks H. T., Kappel F., Wang C., “Weak solutions and differentiability for size structured population models”, Internat. Ser. Numer. Math., 100 (1991), 35–50 | MR | Zbl

[4] Ackleh A. S., Deng K., “Monotone method for first order nonlocal hyperbolic initial-boundary value problems”, Applic. Analys., 67 (1997), 283–293 | DOI | MR | Zbl

[5] Sinko J. W., Streifer W., “A new model for age-sized structure for a population”, Ecology, 48 (1967), 910–918 | DOI

[6] Denisov A. M., Makeev A. C., “Iteratsionnye metody resheniya obratnoi zadachi dlya odnoi modeli populyatsii”, Zh. vychisl. matem. i matem. fiz., 44:8 (2004), 1480–1489 | MR | Zbl

[7] Makeev A. C., “Metody resheniya obratnykh zadach dlya modeli populyatsii”, Vestn. MGU. Ser. 15. Vychisl. matem. i kibernetika, 2005, no. 3, 3–16 | MR | Zbl

[8] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1974 | MR