Smooth volume integral conservation law and method for problems in Lagrangian coordinates
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 3, pp. 473-484 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An integral conservation law is derived for smooth volume in Lagrangian coordinates (a comoving frame). A method for approximation of the integral smooth volume conservation law is discussed. An extension technique is suggested for development of smooth volume schemes. For hyperbolic systems, smooth volume upwind and Godunov schemes with monotonic reconstruction are derived. The schemes are applied to equations of gas dynamics and tested for three gas-dynamics shock tube problems. The solutions are monotonic and precise.
@article{ZVMMF_2006_46_3_a10,
     author = {T. Ismagilov},
     title = {Smooth volume integral conservation law and method for problems in {Lagrangian} coordinates},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {473--484},
     year = {2006},
     volume = {46},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_3_a10/}
}
TY  - JOUR
AU  - T. Ismagilov
TI  - Smooth volume integral conservation law and method for problems in Lagrangian coordinates
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2006
SP  - 473
EP  - 484
VL  - 46
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_3_a10/
LA  - en
ID  - ZVMMF_2006_46_3_a10
ER  - 
%0 Journal Article
%A T. Ismagilov
%T Smooth volume integral conservation law and method for problems in Lagrangian coordinates
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2006
%P 473-484
%V 46
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_3_a10/
%G en
%F ZVMMF_2006_46_3_a10
T. Ismagilov. Smooth volume integral conservation law and method for problems in Lagrangian coordinates. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 3, pp. 473-484. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_3_a10/

[1] Monaghan J. J., “Smoothed particle hydrodynamics”, Ann. Rev. Astron. Astrophys., 92 (1992), 30

[2] Lucy L. B., “A numerical approach to the testing of the fission hypothesis”, Astron. J., 82 (1977), 12 | DOI

[3] Godunov S. K., “Difference method of numerical computation of discontinuous solution of hydrodynamic equations”, Math. Sibirian., 47 (1959), 271 (In Russian) | MR | Zbl

[4] Barth T.J., Jespersen DC., The design and application of upwind schemes on unstructured meshes, Techn. Rept AIAA-89-0366, 1989

[5] Monaghan J. J., “SPH and Riemann solvers”, J. Comput. Phys., 136 (1997), 298 | DOI | MR | Zbl

[6] Parshikov A. N., “Primenenie resheniya zadachi Rimana v metode SPH”, Zh. vychisl. matem. i matem. fiz., 39:7 (1999), 1216–1225 | MR | Zbl

[7] Parshikov A. N., Medin S. A., “Smoothed particle hydrodynamics using interparticle contact algorithms”, J. Comput. Phys., 180 (2002), 358 | DOI | Zbl

[8] Molteni D., Bilello C., “Riemann solver in SPH”, Mem. S. A. It., 1, Suppl., 2003, 36

[9] Inutsuka S., “Reformulation of smoothed particle hydrodynamics with Riemann solver”, J. Comput. Phys., 179 (2002), 238 | DOI | Zbl

[10] Ismagilov T. Z., Smooth volume method II, Techn. Rept UCRL-JRNL-206392, Lawrence Livermore Nat. Lab., 2004

[11] Monaghan J. J., “An introduction to SPH”, Comput. Phys. Communs., 48 (1988), 89 | DOI | Zbl