@article{ZVMMF_2006_46_3_a1,
author = {B. Nguyen},
title = {Regularization for unconstrained vector optimization of convex functionals in {Banach} spaces},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {372--378},
year = {2006},
volume = {46},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_3_a1/}
}
TY - JOUR AU - B. Nguyen TI - Regularization for unconstrained vector optimization of convex functionals in Banach spaces JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2006 SP - 372 EP - 378 VL - 46 IS - 3 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_3_a1/ LA - en ID - ZVMMF_2006_46_3_a1 ER -
B. Nguyen. Regularization for unconstrained vector optimization of convex functionals in Banach spaces. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 3, pp. 372-378. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_3_a1/
[1] Steuer R. E., Multiple-criteria optimization: theory, computation, and applications, John Wiley and Sons, New York, 1986 | MR | Zbl
[2] Miettinen K., Nonlinear multiobjective optimization, Kluwer Acad. Publ., Boston, Massachussets, 1999 | MR
[3] Schaffler S., Schultz R., Weinzierl K., “Stochastic method for the solution of unconstrained vector optimization problems”, J. Optimizat. Theory and Appl., 114 (2002), 209–222 | DOI | MR
[4] Vainberg M. M., Variational method and method of monotone operators in the theory of nonlinear equations, Nauka, M., 1972 (in Russian) | MR | Zbl
[5] Alber Ya. I., “On solving nonlinear equations involving monotone operators in Banach spaces”, Sibirskii Math. J., SSSR, 26. (1975), 3–11 (in Russian)
[6] Alber Ya. I., Ryazantseva I. P., “On solutions of nonlinear problems involving monotone discontinuous operators”, Different. Uravnenia, SSSR, 25:2 (1979), 331–342 (in Russian)
[7] Barbu V., Nonlinear semigroups and differential equations in Banach spaces, Editura Academiei Republicii Socialiste România, Romania, 1976 | MR | Zbl
[8] Browder E. F., “Existence and approximation of solutions of nonlinear variational inequalities”, Proc. Nat. Acad. Sci. U.S.A., 56 (1966), 1080–1086 | DOI | MR | Zbl
[9] Ryazantseva I. P., “O reshenii variatsionnykh neravenstv s monotonnymi operatorami metodom regulyarizatsii”, Zh. vychisl. matem. i matem. fiz., 23:2 (1983), 479–483 | MR | Zbl
[10] Ryazantseva I. P., “Operator method of regularization for problems of optimal programming with monotone maps”, Sibirskii Math. J. SSSR, 24 (1983), 214 (in Russian)
[11] Engl H. W., “Discrepancy principle for Tikhonov regularization of ill-posed problems leading to optimal convergence rates”, J. Optimizat. Theory and Appl., 52 (1987), 209–215 | DOI | MR | Zbl
[12] Nguyen Buong, “Generalized discrepancy principle and ill-posed equations involving accretive operators”, J. Nonlinear Functional Analys. and Appl. Korea, 9 (2004), 73–78 | MR | Zbl
[13] Nguyen Buong, Pham Van Loi, “On parameter choice and convergence rates in regularization for a class of ill-posed variational inequalities”, Zh. vychisl. matem. i matem. fiz., 44:10 (2004), 1735–1744 | MR | Zbl