Regularization for unconstrained vector optimization of convex functionals in Banach spaces
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 3, pp. 372-378 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An operator regularization method is considered for ill-posed vector optimization of weakly lower semicontinuous essentially convex functionals on reflexive Banach spaces. The regularization parameter is chosen by a modified generalized discrepancy principle. A condition for the estimation of the convergence rate of regularized solutions is derived.
@article{ZVMMF_2006_46_3_a1,
     author = {B. Nguyen},
     title = {Regularization for unconstrained vector optimization of convex functionals in {Banach} spaces},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {372--378},
     year = {2006},
     volume = {46},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_3_a1/}
}
TY  - JOUR
AU  - B. Nguyen
TI  - Regularization for unconstrained vector optimization of convex functionals in Banach spaces
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2006
SP  - 372
EP  - 378
VL  - 46
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_3_a1/
LA  - en
ID  - ZVMMF_2006_46_3_a1
ER  - 
%0 Journal Article
%A B. Nguyen
%T Regularization for unconstrained vector optimization of convex functionals in Banach spaces
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2006
%P 372-378
%V 46
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_3_a1/
%G en
%F ZVMMF_2006_46_3_a1
B. Nguyen. Regularization for unconstrained vector optimization of convex functionals in Banach spaces. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 3, pp. 372-378. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_3_a1/

[1] Steuer R. E., Multiple-criteria optimization: theory, computation, and applications, John Wiley and Sons, New York, 1986 | MR | Zbl

[2] Miettinen K., Nonlinear multiobjective optimization, Kluwer Acad. Publ., Boston, Massachussets, 1999 | MR

[3] Schaffler S., Schultz R., Weinzierl K., “Stochastic method for the solution of unconstrained vector optimization problems”, J. Optimizat. Theory and Appl., 114 (2002), 209–222 | DOI | MR

[4] Vainberg M. M., Variational method and method of monotone operators in the theory of nonlinear equations, Nauka, M., 1972 (in Russian) | MR | Zbl

[5] Alber Ya. I., “On solving nonlinear equations involving monotone operators in Banach spaces”, Sibirskii Math. J., SSSR, 26. (1975), 3–11 (in Russian)

[6] Alber Ya. I., Ryazantseva I. P., “On solutions of nonlinear problems involving monotone discontinuous operators”, Different. Uravnenia, SSSR, 25:2 (1979), 331–342 (in Russian)

[7] Barbu V., Nonlinear semigroups and differential equations in Banach spaces, Editura Academiei Republicii Socialiste România, Romania, 1976 | MR | Zbl

[8] Browder E. F., “Existence and approximation of solutions of nonlinear variational inequalities”, Proc. Nat. Acad. Sci. U.S.A., 56 (1966), 1080–1086 | DOI | MR | Zbl

[9] Ryazantseva I. P., “O reshenii variatsionnykh neravenstv s monotonnymi operatorami metodom regulyarizatsii”, Zh. vychisl. matem. i matem. fiz., 23:2 (1983), 479–483 | MR | Zbl

[10] Ryazantseva I. P., “Operator method of regularization for problems of optimal programming with monotone maps”, Sibirskii Math. J. SSSR, 24 (1983), 214 (in Russian)

[11] Engl H. W., “Discrepancy principle for Tikhonov regularization of ill-posed problems leading to optimal convergence rates”, J. Optimizat. Theory and Appl., 52 (1987), 209–215 | DOI | MR | Zbl

[12] Nguyen Buong, “Generalized discrepancy principle and ill-posed equations involving accretive operators”, J. Nonlinear Functional Analys. and Appl. Korea, 9 (2004), 73–78 | MR | Zbl

[13] Nguyen Buong, Pham Van Loi, “On parameter choice and convergence rates in regularization for a class of ill-posed variational inequalities”, Zh. vychisl. matem. i matem. fiz., 44:10 (2004), 1735–1744 | MR | Zbl