@article{ZVMMF_2006_46_2_a9,
author = {Zh. Zh. Bai and L. A. Krukier and T. S. Martynova},
title = {Two-step iterative methods for solving the stationary convection-diffusion equation with a~small parameter at the highest derivative on a~uniform grid},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {295--306},
year = {2006},
volume = {46},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_2_a9/}
}
TY - JOUR AU - Zh. Zh. Bai AU - L. A. Krukier AU - T. S. Martynova TI - Two-step iterative methods for solving the stationary convection-diffusion equation with a small parameter at the highest derivative on a uniform grid JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2006 SP - 295 EP - 306 VL - 46 IS - 2 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_2_a9/ LA - ru ID - ZVMMF_2006_46_2_a9 ER -
%0 Journal Article %A Zh. Zh. Bai %A L. A. Krukier %A T. S. Martynova %T Two-step iterative methods for solving the stationary convection-diffusion equation with a small parameter at the highest derivative on a uniform grid %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2006 %P 295-306 %V 46 %N 2 %U http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_2_a9/ %G ru %F ZVMMF_2006_46_2_a9
Zh. Zh. Bai; L. A. Krukier; T. S. Martynova. Two-step iterative methods for solving the stationary convection-diffusion equation with a small parameter at the highest derivative on a uniform grid. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 2, pp. 295-306. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_2_a9/
[1] Samarskii A. A., Vabischevich P. N., Chislennye metody resheniya zadach konvektsii-diffuzii, Editorial URSS, M., 1999
[2] Morton K. W., Numerical solution of convection-diffusion problems, Chapmen-Hall, London, 1996 | MR | Zbl
[3] Zhang J., “Preconditioned iterative methods and finite difference schemes for convection-diffusion”, Appl. Math. and Comput., 109 (2000), 11–30 | DOI | MR | Zbl
[4] Shishkin G. I., “Setochnaya approksimatsiya singulyarno vozmuschennykh ellipticheskikh uravnenii s konvektivnymi chlenami pri nalichii razlichnykh tipov pogranichnykh sloev”, Zh. vychisl. matem. i matem. fiz., 45:1 (2005), 110–125 | MR | Zbl
[5] Bakhvalov N. S., “K optimizatsii metodov resheniya kraevykh zadach pri nalichii pogranichnogo sloya”, Zh. vychisl. matem. i matem. fiz., 9:4 (1969), 841–859 | Zbl
[6] Voevodin V. V., Kuznetsov Yu. A., Matritsy i vychisleniya, Nauka, M., 1984 | MR | Zbl
[7] Krukier L. A., “Neyavnye raznostnye skhemy i iteratsionnyi metod ikh resheniya dlya odnogo klassa sistem kvazilineinykh uravnenii”, Izv. vuzov. Matematika, 1979, no. 7, 41–52 | MR | Zbl
[8] Krukier L. A., Martynova T. S., “O vliyanii formy zapisi uravneniya konvektsii-diffuzii na skhodimost metoda verkhnei relaksatsii”, Zh. vychisl. matem. i matem. fiz., 39:11 (1999), 1821–1827 | MR | Zbl
[9] Taussky O., “Positive-definite matrices and their role in the study of the characteristic roots of general matrices”, Advances Math., 2 (1968), 175–186 | DOI | MR | Zbl
[10] Krukier L. A., Chikina L. G., Belokon T. V., “Triangular skew-symmetric iterative solvers for strongly nonsymmetric positive real linear system of equations”, Appl. Numer. Math., 41 (2002), 89–105 | DOI | MR | Zbl
[11] Wang L., Bai Z.-Z., “Skew-Hermitian triangular splitting iteration methods for non-Hermitian positive definite linear systems of strong skew-Hermitian parts”, BIT Numer. Math., 44 (2004), 363–386 | DOI | MR | Zbl
[12] Samarskii A. A., Nikolaev E. C., Metody resheniya setochnykh uravnenii, Nauka, M., 1978 | MR
[13] Bochev M. A., Krukier L. A., “Ob iteratsionnom reshenii silno nesimmetrichnykh sistem lineinykh algebraicheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 37:11 (1997), 1283–1293 | MR | Zbl
[14] Bai Z.-Z., Sun J.-C., Wang D.-R., “A unified framework for the construction of various matrix multispliting iterative methods for large sparse system of linear equations”, Comput. Math. and Appl., 32:12 (1996), 51–76 | DOI | MR | Zbl
[15] Belokon T. V., “Ispolzovanie poperemenno-treugolnykh kososimmetrichnykh pereobuslavlivatelei pri reshenii silno nesimmetrichnykh sistem lineinykh algebraicheskikh uravnenii variatsionnym metodom”, X Vseros. shkola-seminar “Sovrem. probl. matem. modelirovaniya”, v. 2, Izd-vo RGU, Rostov-na-Donu, 2004, 60–71
[16] Krukier L. A., “Matematicheskoe modelirovanie protsessov perenosa v neszhimaemykh sredakh s preobladayuschei konvektsiei”, Matem. modelirovanie, 9:2 (1997), 4–12 | MR | Zbl