Combined use of the finite element and finite superelement methods
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 2, pp. 270-283 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Results of the theoretical and numerical studies of an algorithm based on the combined use of the finite element and finite superelement methods are presented. Estimates of the errors for one of the variants of the method applied to solving the Laplace equation are obtained. The method can be used to solve a problem concerning the skin layer appearing due to high velocities.
@article{ZVMMF_2006_46_2_a7,
     author = {M. P. Galanin and E. B. Savenkov},
     title = {Combined use of the finite element and finite superelement methods},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {270--283},
     year = {2006},
     volume = {46},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_2_a7/}
}
TY  - JOUR
AU  - M. P. Galanin
AU  - E. B. Savenkov
TI  - Combined use of the finite element and finite superelement methods
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2006
SP  - 270
EP  - 283
VL  - 46
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_2_a7/
LA  - ru
ID  - ZVMMF_2006_46_2_a7
ER  - 
%0 Journal Article
%A M. P. Galanin
%A E. B. Savenkov
%T Combined use of the finite element and finite superelement methods
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2006
%P 270-283
%V 46
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_2_a7/
%G ru
%F ZVMMF_2006_46_2_a7
M. P. Galanin; E. B. Savenkov. Combined use of the finite element and finite superelement methods. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 2, pp. 270-283. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_2_a7/

[1] Strakhovskaya L. G., Fedorenko R. P., “Ob odnom variante metoda konechnykh elementov”, Zh. vychisl. matem. i matem. fiz., 19:4 (1979), 950–960 | MR | Zbl

[2] Strakhovskaya L. G., Fedorenko R. P., Raschet diffuzii v mnogosvyaznoi oblasti metodom konechnykh superelementov, Preprint No 171, IPMatem. AN SSSR, M., 1987 | MR

[3] Strakhovskaya L. G., Fedorenko R. P., Raschet napryazhenii v kompozitnom tele metodom konechnykh superelementov, Preprint No 97, IPMatem. RAN, M., 1994

[4] Fedorenko R. P., Vvedenie v vychislitelnuyu fiziku, Izd-vo MFTI, M., 1994

[5] Repyakh V. V., “Primenenie odnogo varianta metoda konechnykh superelementov k resheniyu zadach teorii uprugosti”, Zh. vychisl. matem. i matem. fiz., 26:11 (1986), 1643–1653 | MR

[6] Repyakh V. V., “Analiz oshibok metoda priblizhennykh superelementov”, Zh. vychisl. matem. i matem. fiz., 30:7 (1990), 963–983 | MR

[7] Zhukov V. T., Novikova N. D., Strakhovskaya L. G. i dr., Metod konechnykh elementov v zadachakh konvektsii-diffuzii, Preprint No 8, IPMatem. RAN, M., 2001

[8] Galanin M. P., Savenkov E. B., O svyazi metoda konechnykh superelementov Fedorenko i proektsionno-setochnykh metodov, Preprint No 67, IPMatem. RAN, M., 2001

[9] Galanin M., Savenkov E., “Fedorenko finite superelement method as special Galerkin approximation”, Math. Modelling and Analys., 7:1 (2002), 41–50 | MR | Zbl

[10] Galanin M. P., Savenkov E. B., “K obosnovaniyu metoda konechnykh superelementov Fedorenko”, Zh. vychisl. matem. i matem. fiz., 43:5 (2003), 713–729 | MR

[11] Galanin M. P., Savenkov E. B., Metod konechnykh superelementov dlya zadachi o skorostnom skin-sloe, Preprint No 3, IPMatem. RAN, M., 2004

[12] Galanin M. P., Savenkov E. B., Sovmestnoe ispolzovanie metoda konechnykh elementov i metoda konechnykh superelementov, Preprint No 13, IPMatem. RAN, M., 2004

[13] Galanin M. P., Savenkov E. B., Temis Yu. M., Metod konechnykh elementov dlya zadach teorii uprugosti, Preprint No 38, IPMatem. RAN, M., 2004

[14] Lebedev V. I., “Operatory Puakare–Steklova i metody razdeleniya oblasti v variatsionnykh zadachakh”, Vychisl. protsessy i sistemy, 2, Nauka, M., 1985

[15] Agoshkov V. I., “Metody razdeleniya oblasti v zadachakh matematicheskoi fiziki”, Sopryazhennye ur-niya i algoritmy vozmuschenii v zadachakh matem. fiz., OVM AN SSSR, M., 1989

[16] Lebedev V. I., Agoshkov V. I., Operatory Puankare–Steklova i ikh prilozheniya v analize, OVM AN SSSR, M., 1983 | MR

[17] Lebedev V. I., Funktsionalnyi analiz i vychislitelnaya matematika, Fizmatlit, M., 2000

[18] Lebedev V. I., Metod kompozitsii, OVM AN SSSR, M., 1986 | MR

[19] Zarubin B. C., Selivanov V. V., Variatsionnye i chislennye metody mekhaniki sploshnoi sredy, Izd-vo MGTU im. N. E. Baumana, M., 1993

[20] Agoshkov V. I., Metody razdeleniya oblasti: nekotorye rezultaty teorii i prilozheniya, OVM AN SSSR, M., 1990 | MR

[21] Brezzi F., Franca L. P., Russo A., “Futher consideration on residual-free bubbles for advective-diffusion equation”, Comput. Methods. Appl. Mech. Engng., 166 (1998), 25–33 | DOI | MR | Zbl

[22] Franca L. P., Russo A., “Approximation of the Stokes problem by residual-free macro bubbles”, East-West J. Appl. Math., 4 (1996), 265–278 | MR | Zbl

[23] Brezzi F., Hughes T. J. R., Marini L. D., Russo A., “A priory error analysis of residual-free bubbles for advective-diffusion problems”, SIAM J. Numer. Analys., 36:6 (1999), 1933–1948 | DOI | MR | Zbl

[24] Rektoris K., Variatsionnye metody v matematicheskoi fizike i tekhnike, Mir, M., 1985 | MR | Zbl

[25] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980 | MR

[26] Oben Zh.-P., Priblizhennoe reshenie ellipticheskikh kraevykh zadach, Mir, M., 1977 | MR

[27] Marchuk G. I., Agoshkov V. I., Vvedenie v proektsionno-setochnye metody, Nauka, M., 1981 | MR

[28] Krasnoselskii M. A., Vainikko G. M., Zabreiko P. P. i dr., Priblizhennoe reshenie operatornykh uravnenii, Nauka, M., 1969 | MR

[29] Yakovlev G. N., “O sledakh funktsii iz $W_p^l$ na kusochno-gladkikh poverkhnostyakh”, Matem. sb., 74(116):4 (1967), 526–543 | MR | Zbl

[30] Ryabenkii B. C., Vvedenie v vychislitelnuyu matematiku, Nauka, M., 1994 | MR