Stability criterion for small perturbations for a quasi-gasdynamic system of equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 2, pp. 262-269
Cet article a éte moissonné depuis la source Math-Net.Ru
The stability of small perturbations against a constant background is studied for a system of quasi-gasdynamic equations in an arbitrary number of space variables. It is established that, for a fixed adiabatic exponent $\gamma$, the stability is determined only by the background Mach number, and a necessary and sufficient condition for stability at any Mach number is $\gamma\le\bar\gamma$, where $\bar\gamma\approx6.2479$. The proof is based on a direct analysis of the corresponding complex characteristic numbers depending on several parameters. The multidimensional case is successfully reduced to the one-dimensional one. Then, the generalized Routh-Hurwitz criterion is applied in conjunction with analytical calculations based on Mathematica.
@article{ZVMMF_2006_46_2_a6,
author = {A. A. Zlotnik and I. A. Zlotnik},
title = {Stability criterion for small perturbations for a~quasi-gasdynamic system of equations},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {262--269},
year = {2006},
volume = {46},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_2_a6/}
}
TY - JOUR AU - A. A. Zlotnik AU - I. A. Zlotnik TI - Stability criterion for small perturbations for a quasi-gasdynamic system of equations JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2006 SP - 262 EP - 269 VL - 46 IS - 2 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_2_a6/ LA - ru ID - ZVMMF_2006_46_2_a6 ER -
%0 Journal Article %A A. A. Zlotnik %A I. A. Zlotnik %T Stability criterion for small perturbations for a quasi-gasdynamic system of equations %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2006 %P 262-269 %V 46 %N 2 %U http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_2_a6/ %G ru %F ZVMMF_2006_46_2_a6
A. A. Zlotnik; I. A. Zlotnik. Stability criterion for small perturbations for a quasi-gasdynamic system of equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 2, pp. 262-269. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_2_a6/
[1] Chetverushkin B. N., Kineticheskie skhemy i kvazigazodinamicheskaya sistema uravnenii, MAKS Press, M., 2004
[2] Zlotnik A. A., “Klassifikatsiya nekotorykh modifikatsii sistemy uravnenii Eilera”, Dokl. RAN, 407:6 (2006), 747–751 | MR
[3] Eidelman S. D., Parabolicheskie sistemy, Nauka, M., 1964 | MR
[4] Gantmakher F. R., Teoriya matrits, Nauka, M., 1988 | MR | Zbl
[5] Dorodnitsyn L. V., “Ob ustoichivosti malykh kolebanii v kvazigazodinamicheskoi sisteme uravnenii”, Zh. vychisl. matem. i matem. fiz., 44:7 (2004), 1299–1305 | MR | Zbl