A method of asymptotic constructions of improved accuracy for a quasilinear singularly perturbed parabolic convection-diffusion equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 2, pp. 242-261 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Dirichlet problem on an interval for quasilinear singularly perturbed parabolic convection-diffusion equation is considered. The higher order derivative of the equation is multiplied by a parameter $\varepsilon$ that takes any values from the half-open interval $(0,1]$. For this type of linear problems, the order of the $\varepsilon$-uniform convergence (with respect to $x$ and $t$) for the well-known schemes is not higher than unity (in the maximum norm). For the boundary value problem under consideration, grid approximations are constructed that converge $\varepsilon$-uniformly at the rate of $O(N^{-2}\ln^2N+N_0^{-2})$, where $N+1$ and $N_0+1$ are the numbers of the mesh points with respect to $x$ and $t$, respectively. On the $x$ axis, piecewise uniform meshes that condense in the boundary layer are used. If the parameter value is small compared to the effective step of the spatial grid, the domain decomposition method is used, which is motivated by “asymptotic constructions”. Monotone approximations of “auxiliary” subproblems describing the main terms of the asymptotic expansion of the solution outside a neighborhood of the boundary layer neighborhood are used. In the neighborhood of the boundary layer (of the width $O(\varepsilon\ln N)$) the first derivative with respect to $x$ is approximated by the central difference derivative. These subproblems are successively solved in the subdomains on uniform grids. If the parameter values are not sufficiently small (compared to the effective step of the mesh with respect to $x$), the classical implicit difference schemes approximating the first derivative with respect to $x$ by the central difference derivative are applied. To improve the accuracy in $t$, the defect correction technique is used. Notice that the calculation of the solution of the constructed difference scheme (the scheme based on the method of asymptotic constructions) can be considerably simplified for sufficiently small values of the parameter $\varepsilon$.
@article{ZVMMF_2006_46_2_a5,
     author = {G. I. Shishkin},
     title = {A~method of asymptotic constructions of improved accuracy for a~quasilinear singularly perturbed parabolic convection-diffusion equation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {242--261},
     year = {2006},
     volume = {46},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_2_a5/}
}
TY  - JOUR
AU  - G. I. Shishkin
TI  - A method of asymptotic constructions of improved accuracy for a quasilinear singularly perturbed parabolic convection-diffusion equation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2006
SP  - 242
EP  - 261
VL  - 46
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_2_a5/
LA  - ru
ID  - ZVMMF_2006_46_2_a5
ER  - 
%0 Journal Article
%A G. I. Shishkin
%T A method of asymptotic constructions of improved accuracy for a quasilinear singularly perturbed parabolic convection-diffusion equation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2006
%P 242-261
%V 46
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_2_a5/
%G ru
%F ZVMMF_2006_46_2_a5
G. I. Shishkin. A method of asymptotic constructions of improved accuracy for a quasilinear singularly perturbed parabolic convection-diffusion equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 2, pp. 242-261. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_2_a5/

[1] Bakhvalov N. S., “K optimizatsii metodov resheniya kraevykh zadach pri nalichii pogranichnogo sloya”, Zh. vychisl. matem. i matem. fiz., 9:4 (1969), 841–859 | Zbl

[2] Ilin A. M., “Raznostnaya skhema dlya differentsialnogo uravneniya s malym parametrom pri starshei proizvodnoi”, Matem. zametki, 6:2 (1969), 237–248

[3] Dulan E., Miller Dzh., Shilders U., Ravnomernye chislennye metody resheniya zadach s pogranichnym sloem, Mir, M., 1983 | MR

[4] Shishkin G. I., Setochnye approksimatsii singulyarno vozmuschennykh ellipticheskikh i parabolicheskikh uravnenii, UrO RAN, Ekaterinburg, 1992

[5] Farrell P. A., Hemker P. W., Shishkin G. I., “Discrete approximations for singularly perturbed boundary value problems with parabolic layers. I–III”, J. Comput. Math., 14:1 (1996), 71–97 ; 2, 183–194 ; 3, 273–290 | MR | Zbl | MR | Zbl | MR | Zbl

[6] Miller J. J. H., O'Riordan E., Shishkin G. I., Fitted numerical methods for singular perturbation problems. Error estimates in the maximum norm for linear problems in one and two dimensions, World Scient., Singapore, 1996 | MR

[7] Ross H.-G., Stynes M., Tobiska L., Numerical methods for singularly perturbed differential equations. Convectiondiffusion and flow problems, Springer, Berlin, 1996 | MR

[8] Kolmogorov V. L., Shishkin G. I., “Numerical methods for singularly perturbed boundary value problems modeling diffusion processes”, Singular Perturbation Problems in Chem. Phys., John Willey Sons, New York, 1997, 181–362

[9] Farrell P. A., Hegarty A. F., Miller J. J. H., O'Riordan E., Shishkin G. I., Robust computational techniques for boundary layers, Chapman Hall, Boca Raton; CRC Press, 2000 | MR | Zbl

[10] Liseikin V. D., Layer resolving grids and transformations for singular perturbation problems, VSP, Utrecht, 2001

[11] Allen D. N., Southwell R. V., “Relaxation methods applied to determine the motion, in two dimensions, of viscous fluid past a fixed cylinder”, Quart. J. Mech. and Appl. Math., 8:2 (1955), 129–145 | DOI | MR | Zbl

[12] Hemker P. W., Shishkin G. I., “On a class of singularly perturbed boundary value problems for which an adaptive mesh technique in necessary”, Proc. Sec. Internat. Colloquium on Numer. Analys. Internat. Sci. Publ., 1994, 83–92 | MR | Zbl

[13] Farrell P. A., Miller J. J. H., O'Riordan E., Shishkin G. I., “On the non-existence of 8-uniform finite difference methods on uniform meshes for semilinear two-point boundary value problems”, Math. Comput., 67:222 (1998), 603–617 | DOI | MR | Zbl

[14] Hemker P. W., Shishkin G. I., Shishkina L. P., “The use of defect correction for the solution of parabolic singular perturbation problems”, Z. angew. Math. und Mech., 77:1 (1997), 59–74 | DOI | MR | Zbl

[15] Hemker P. W., Shishkin G. I., Shishkina L. P., “$\varepsilon$-uniform schemes with high-order time-accuracy for parabolic singular perturbation problems”, IMA J. Numer. Analys., 20:1 (2000), 99–121 | DOI | MR | Zbl

[16] Hemker P. W., Shishkin G. I., Shishkina L. P., “High-order time-accurate schemes for parabolic singular perturbation problems with convection”, Rus. J. Numer. Analys. Math. Modelling, 17:1 (2002), 1–24 | MR

[17] Hemker P. W., Shishkin G. I., Shishkina L. P., “High-order time-accurate schemes for parabolic singular perturbation convection-diffusion problems with Robin boundary conditions”, Comput. Meth. Appl. Math., 2:1 (2002), 3–25 | MR | Zbl

[18] Hemker P. W., Shishkin G. I., Shishkina L. P., “Novel defect correction high-order, in space and time, accurate schemes for parabolic singularly peturbed convection-diffusion problems”, Comput. Meth. Appl. Math., 3:3 (2003), 387–404 | MR | Zbl

[19] Shishkin G. I., “Povyshenie tochnosti reshenii raznostnykh skhem dlya parabolicheskikh uravnenii s malym parametrom pri starshei proizvodnoi”, Zh. vychisl. matem. i matem. fiz., 24:6 (1984), 864–875 | MR | Zbl

[20] Shishkin G. I., “Setochnye approksimatsii dlya singulyarno vozmuschennykh ellipticheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 38:12 (1998), 1989–2001 | MR | Zbl

[21] Khemker P. V., Shishkin G. I., Shishkina L. P., “Dekompozitsiya metoda Richardsona vysokogo poryadka tochnosti dlya singulyarno vozmuschennogo ellipticheskogo uravneniya reaktsii-diffuzii”, Zh. vychisl. matem. i matem. fiz., 44:2 (2004), 329–337 | MR

[22] Shishkin G. I., “Setochnye approksimatsii s uluchshennoi skorostyu skhodimosti dlya singulyarno vozmuschennykh ellipticheskikh uravnenii v oblastyakh s kharakteristicheskimi granitsami”, Sibirskii zhurnal vychisl. matem. SO RAN. Novosibirsk, 5:1 (2002), 71–92 | Zbl

[23] Shishkin G. I., “Grid approximation of improved convergence order for a singularly perturbed elliptic convectiondiffusion equation”, Proc. Steklov Inst. of Math., Suppl. 1, M., 2003, 184–202 | MR

[24] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989 | MR

[25] Marchuk G. I., Shaidurov V. V., Povyshenie tochnosti reshenii raznostnykh skhem, Nauka, M., 1979 | MR

[26] K. Böhmer, H. J. Stetter (eds.), Defect correction methods. Theory and applications, Comput. Suppl., 5, Springer, Vienna, 1984 | MR | Zbl

[27] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva H. H., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967