Solving linear systems of differential and difference equations with respect to a part of the unknowns
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 2, pp. 229-241 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The existence of solutions $y$ to a linear differential or difference system whose components $y_{i_1},\dots,y_{i_m}$ belong to a given class of functions and the problem of constructing such components are considered.
@article{ZVMMF_2006_46_2_a4,
     author = {S. A. Abramov and M. Bronstein},
     title = {Solving linear systems of differential and difference equations with respect to a~part of the unknowns},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {229--241},
     year = {2006},
     volume = {46},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_2_a4/}
}
TY  - JOUR
AU  - S. A. Abramov
AU  - M. Bronstein
TI  - Solving linear systems of differential and difference equations with respect to a part of the unknowns
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2006
SP  - 229
EP  - 241
VL  - 46
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_2_a4/
LA  - ru
ID  - ZVMMF_2006_46_2_a4
ER  - 
%0 Journal Article
%A S. A. Abramov
%A M. Bronstein
%T Solving linear systems of differential and difference equations with respect to a part of the unknowns
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2006
%P 229-241
%V 46
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_2_a4/
%G ru
%F ZVMMF_2006_46_2_a4
S. A. Abramov; M. Bronstein. Solving linear systems of differential and difference equations with respect to a part of the unknowns. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 2, pp. 229-241. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_2_a4/

[1] Bronstein M., “Computer algebra algorithms for linear ordinary differential and difference equations”, Progress in Math., 202, Birkhäuser, Basel, 2001, 105–119 | MR | Zbl

[2] Singer M. F., van der Put M., Galois theory of linear differential equations, Grundlehren der Math. Wiss., 328, Springer, Heidelberg, 2003 | MR | Zbl

[3] Koddington E., Levinson H., Teoriya obyknovennykh differentsialnykh uravnenii, Izd-vo inostr. lit., M., 1958

[4] Barkatou M. A., Pfluegel E., “An algorithm computing the regular formal solutions of a system linear differential equations”, J. Symbolic Comput., 28 (1999), 569–587 | DOI | MR | Zbl

[5] Abramov S. A., Bronstein M., Khmelnov D. E., “On regular and logarithmic solutions of ordinary linear differential systems”, Comput. Algebra in Scient. Comput., Proc. CASC'05, Lect. Notes in Comput. Science, 3718, Springer, Berlin, Heildelberg, 2005, 1–12 | MR | Zbl

[6] Vorotnikov V. I., Rumyantsev V. V., Ustoichivost i upravlenie po chasti koordinat fazovogo vektora dinamicheskikh sistem: teoriya, metody i prilozheniya, Nauchn. mir, M., 2001 | MR | Zbl

[7] Vorotnikov V. I., Prokopev V. P., “Ob ustoichivosti dvizheniya otnositelno chasti peremennykh dlya lineinykh sistem”, Prikl. matem. i mekhan., 42 (1978), 268–271 | MR | Zbl

[8] Chermenskii A. G., “Nablyudaemost i ustoichivost po chasti peremennykh”, Differents. ur-niya, 23:4 (1987), 680–685 | MR

[9] Vazov V., Asimptoticheskie razlozheniya reshenii obyknovennykh differentsialnykh uravnenii, Mir, M., 1968

[10] Abramov S. A., Bronstein M., “On solutions of linear functional systems”, Proc. of ISSAC'2001, ACM Press, New York, 2001, 1–6 | MR

[11] Barkatou M. A., “On rational solutions of systems of linear differential equations”, J. Symbolic Comput., 28 (1999), 547–567 | DOI | MR | Zbl

[12] Pfluegel E., “An algorithm for computing exponential solutions of first order linear differential systems”, Proc. ISSAC'1997, ACM Press, 1997, 164–171 | MR | Zbl

[13] Cope F. T., “Formal solutions of irregular differential equations”, Amer. J. Math., 58 (1936), 130–149 | DOI | MR

[14] Abramov S. A., Barkatou M. A., “Rational solutions of first order difference systems”, Proc. ISSAC'1998, ACM Press, New York, 1998, 124–131 | MR | Zbl

[15] Barkatou M. A., Chen G., “Computing the exponential part of a formal fundamental matrix of a linear difference system”, J. Difference Equat. and Applic., 5 (1999), 117–142 | DOI | MR | Zbl

[16] Singer M. F., Hendriks P. A., “Solving difference equations in finite terms”, J. Symbolic Comput., 27 (1999), 239–259 | DOI | MR | Zbl

[17] Petkovšek M., “Hypergeometric solutions of linear recurrences with polynomial coefficients”, J. Symbolic Comput., 14 (1992), 243–264 | DOI | MR | Zbl

[18] van Hoeij M., “Finite singularities and hypergeometric solutions of linear recurrence equations”, J. Pure and Appl. Algebra, 139 (1999), 109–131 | DOI | MR | Zbl

[19] Bronstein M., Petkovšek M., “On Ore rings, linear operators and factorization”, Programmirovanie, 1994, no. 1, 27–44 | MR | Zbl

[20] Bronstein M., Petkovšek M., “An introduction to pseudo-linear algebra”, Theor. Comput. Sci., 157 (1996), 3–33 | DOI | MR | Zbl